Skip to main content
Log in

A Study of the Mechanical Properties of Biaxial and Triaxial Braided Composites for an Automotive Propeller Shaft

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Composite materials using braided fiber reinforcements have received a great deal of interest for the realization of a lightweight, energy-saving automobile. While studies have been published to characterize composite materials manufactured by winding or prepreg processes, the performance of braided composites has yet to be fully evaluated in the literature. The purpose of this study was to examine the properties of braided composites. Biaxial and triaxial braided carbon-fiber-reinforced polymer (CFRP) composites were fabricated to characterize their mechanical properties. Tension, shear, compression, and impact tests were performed on the CFRP composite samples. The mean tensile strengths of the biaxial and triaxial braids were 108.5 MPa and 359.6 MPa, respectively. The mean shear strengths of triaxial braids were 99.3 MPa, while the mean shear strength of the biaxial braids was 91.8 MPa. The mean compressive strength of the triaxial braided composite was 295.8 MPa, three times higher than the compressive strength of the biaxial braided composite. The absorbed energy was 13.1 J (4.37 J/mm) for the triaxial composite and 12.0 J (4.00 J/mm) for the biaxial composite. The results of experiments showed that the axial tows of the triaxial braids enhanced the mechanical properties of the composites. The triaxial braided composites appear to be well-suited for use as a material for the fabrication of automotive propeller shafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.-S. Kim, K.-M. Bae, S.-Y. Oh, and M.-K. Seo, Elastomers Compos., 47, 65 (2012).

    Article  CAS  Google Scholar 

  2. J.-A. Manson, Reinforced Plastics, 56, 44 (2012).

    Article  Google Scholar 

  3. J. Osborne, Reinforced Plastics, 57, 20 (2013).

    Article  Google Scholar 

  4. Y. Choi, D. U. Kim, D. J. Kang, S. W. Lee, and H.-T. Shin, JMST, 27, 3445 (2013).

    Google Scholar 

  5. C. L. Holloway, M. S. Sarto, and M. Johansson, IEEE Electromagn. C. Res., 47, 833 (2005).

    Article  Google Scholar 

  6. J. E. Lee, D.-S. Kang, B. H. Lee, J. H. Baek, J. G. Kim, and K. M. Hwang, J. Korean Soc. Precis. Eng., 33, 821 (2016).

    Article  Google Scholar 

  7. Y. Wang, W. Zhang, H. Ren, Z. Huang, F. Geng, Y. Li, and Z. Zhu, Appl. Sci., 10, 1551 (2020).

    Article  Google Scholar 

  8. S. Samal, M. Kolinova, H. Rahier, G. D. Poggetto, and I. Blanco, Appl. Sci., 9, 516 (2019).

    Article  CAS  Google Scholar 

  9. K. Bilisik, Text. Res. J., 83, 1414 (2013).

    Article  CAS  Google Scholar 

  10. T. Uozumi, A. Kito, and T. Yamamoto, Adv. Compos. Matter., 14, 365 (2005).

    Article  CAS  Google Scholar 

  11. M. Gude, F. Lenz, A. Gruhl, B. Witschel, A. Ulbricht, and W. Hufenbach, Sci. Eng. Compo. Mater., 22, 187 (2015).

    Article  CAS  Google Scholar 

  12. K. H. Ko, M. G. Lee, and M. Huh, Compo. Res., 6, 392 (2018).

    Google Scholar 

  13. J. S. Choi, M.S. Thesis, Hanyang University, Soul, 2018.

    Google Scholar 

  14. T. Mitrevski, I. H. Marshall, and R. Thomson, Compos. Struct., 76, 116 (2006).

    Article  Google Scholar 

  15. Toray Product Catalog, https://www.torayca.com/en/lineup/product/pro_001.html (Accessed August 31, 2020).

  16. S. Kwon, “Personal Communication”, Hyolim Industrial, Gyeongsan, Republic of Korea, 2013.

    Google Scholar 

  17. ASTM International, https://www.astm.org (Accessed August 31, 2020).

  18. J. Tate, A. Kelkar, and J. Whitcomb, Int. J. Fatigue, 28, 1239 (2006).

    Article  CAS  Google Scholar 

  19. J. Yan, K. Liu, H. Zhou, Z. Zhang, B. Gu, and B. Sun, Fiber. Polym., 16, 634 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung-Hee You.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, H., Trueba, L. & You, BH. A Study of the Mechanical Properties of Biaxial and Triaxial Braided Composites for an Automotive Propeller Shaft. Fibers Polym 23, 2712–2718 (2022). https://doi.org/10.1007/s12221-022-0061-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-022-0061-2

Keywords

Navigation