Skip to main content
Log in

Recycling of Waste Polyethylene Fishing Nets as Fibre Reinforcement in Gypsum-based Materials

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Identifying new recycling initiatives for waste fishing gear is highly important, especially, if the fishing gear could end up as marine litter. The aim of this study is to investigate the potential of using recycled polyethylene (R-PE) fibres from waste fishing nets as fibre reinforcement in gypsum-based materials. The discarded fishing nets were processed by an industrial, mechanical cutting operation to create monofilament R-PE fibres. The fibre characterisation included tensile tests, geometry, morphology and leaching of anions (Cl, NO3, SO42−). The mechanical properties of the R-PE fibres were found to be in the same range as other commercially available synthetic fibres used in gypsum-based materials. Laboratory-scale specimens were prepared and R-PE fibres added at fractions of 0.25-2.00 wt%. Mechanical tests were carried out to determine the compressive and flexural response of gypsum-based materials. The addition of R-PE fibres resulted in a small reduction in the compressive strength and the ultimate flexural strength, but to the positive side, there was a significant increase in the post-crack performance. Based on these results, gypsum-based materials with the addition of R-PE fibres have the potential for being used as non-structural elements such as gypsum boards where increased post-crack performance and ductility is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Wilcox, N. J. Mallos, G. H. Leonard, A. Rodriguez, and B. D. Hardesty, Mar. Policy, 65, 107 (2016).

    Article  Google Scholar 

  2. C. J. Moore, Environ. Res., 108, 131 (2008).

    Article  CAS  Google Scholar 

  3. J. R. Jambeck, R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, and K. L. Law, Science, 347, 768 (2015).

    Article  CAS  Google Scholar 

  4. M. Stelfox, J. Hudgins, and M. Sweet, Mar. Pollut. Bull., 111, 6 (2016).

    Article  CAS  Google Scholar 

  5. U. Oxvig and U. J. Hansen, “Fishing Gears”, Fiskericirklen, 2007.

  6. B. Meenakumari and K. Ravindran, Cent. Inst. Fish. Technol., 22, 83 (1985).

    Google Scholar 

  7. E. Hagemann, “Gips”, 3rd eds., Polyteknisk Forlag, 1977.

  8. M. Arikan and K. Sobolev, Cem. Concr. Res., 32, 1725 (2002).

    Article  CAS  Google Scholar 

  9. M. A. Ali and F. J. Grimer, J. Mater. Sci., 4, 389 (1969).

    Article  CAS  Google Scholar 

  10. F. Hernández-Olivares, I. Oteiza, and L. de Villanueva, Compos. Struct., 22, 123 (1992).

    Article  Google Scholar 

  11. C. Martias, Y. Joliff, and C. Favotto, Compos. Part B-Eng., 62, 37 (2014).

    Article  CAS  Google Scholar 

  12. A. J. Majumdar, Proc. R. Soc. London. Ser. A, Math. Phys. Sci., 319, 69 (1970)

    CAS  Google Scholar 

  13. N. F. Medina and M. M. Barbero-Barrera, Constr. Build. Mater., 131, 165 (2017).

    Article  Google Scholar 

  14. O. Gencel, J. J. Del Coz Diaz, M. Sutcu, F. Koksal, F. P. Álvarez Rabanal, G. Martónez-Barrera, and W. Brostow, Energy Build., 70, 135 (2014).

    Article  Google Scholar 

  15. Y. H. Deng and T. Furuno, J. Wood Sci., 47, 445 (2001).

    Article  CAS  Google Scholar 

  16. C. Zhu, J. Zhang, J. Peng, W. Cao, and J. Liu, Constr. Build. Mater., 163, 695 (2018).

    Article  CAS  Google Scholar 

  17. F. Iucolano, D. Caputo, F. Leboffe, and B. Liguori, Constr. Build. Mater., 99, 184 (2015).

    Article  Google Scholar 

  18. F. Iucolano, B. Liguori, P. Aprea, and D. Caputo, Compos. Part B-Eng., 138, 149 (2018).

    Article  CAS  Google Scholar 

  19. P. Dalmay, A. Smith, T. Chotard, P. Sahay-Turner, V. Gloaguen, and P. Krausz, J. Mater. Sci., 45, 793 (2010).

    Article  CAS  Google Scholar 

  20. F. Iucolano, L. Boccarusso, and A. Langella, Compos. Part B-Eng., 175, 107073 (2019).

    Article  CAS  Google Scholar 

  21. M. A. Carvalho, C. Calil, and H. Savastano, Mater. Res., 11, 391 (2008).

    Article  CAS  Google Scholar 

  22. G. Vasconcelos, P. B. Lourenço, A. Camões, A. Martins, and S. Cunha, Cem. Concr. Compos., 58, 29 (2015).

    Article  CAS  Google Scholar 

  23. Á. Serna, M. del Río, J. G. Palomo, and M. González, Constr. Build. Mater., 35, 633 (2012).

    Article  Google Scholar 

  24. F. J. H. T. V. Ramos and L. C. Mendes, Green Chem. Lett. Rev., 7, 199 (2014).

    Article  Google Scholar 

  25. F. Parres, J. E. Crespo-Amorós, and A. Nadal-Gisbert, Constr. Build. Mater., 23, 3182 (2009).

    Article  Google Scholar 

  26. Y. Liu, Y. Zhang, Y. Guo, P. K. Chu, and S. Tu, Waste and Biomass Valorization, 8, 203 (2017).

    Article  CAS  Google Scholar 

  27. S. Spadea, I. Farina, A. Carrafiello, and F. Fraternali, Constr. Build. Mater., 80, 200 (2015).

    Article  Google Scholar 

  28. S. Orasutthikul, D. Unno, and H. Yokota, Constr. Build. Mater., 146, 594 (2017).

    Article  Google Scholar 

  29. A. Singh, F. Raj, P. Franco, and J. Binoj, Mar. Struct., 58, 361 (2018).

    Article  Google Scholar 

  30. F. M. Raj, V. A. Nagarajan, and S. S. Elsi, Polym. Bull., 74, 1441 (2017).

    Article  CAS  Google Scholar 

  31. I. M. G. Bertelsen, L. M. Ottosen, and G. Fischer, Constr. Build. Mater., 199, 124 (2019).

    Article  CAS  Google Scholar 

  32. I. M. G. Bertelsen, Ph. D. Thesis, Technical University of Denmark, 2019.

  33. R. Siddique, J. Khatib, and I. Kaur, Waste Manag., 28, 1835 (2008).

    Article  CAS  Google Scholar 

  34. B. S. Al-Tulaian, M. J. Al-Shannag, and A. R. Al-Hozaimy, Constr. Build. Mater., 127, 102 (2016).

    Article  CAS  Google Scholar 

  35. J. H. J. Kim, C. G. Park, S. W. Lee, S. W. Lee, and J. P. Won, Compos. Part B-Eng., 39, 442 (2008).

    Article  Google Scholar 

  36. F. Fraternali, I. Farina, C. Polzone, E. Pagliuca, and L. Feo, Compos. Part B-Eng., 46, 207 (2013).

    Article  CAS  Google Scholar 

  37. R. P. Borg, O. Baldacchino, and L. Ferrara, Constr. Build. Mater., 108, 29 (2016).

    Article  CAS  Google Scholar 

  38. L. A. Pereira De Oliveira and J. P. Castro-Gomes, Constr. Build. Mater., 25, 1712 (2011).

    Article  Google Scholar 

  39. D. Foti, Compos. Struct., 96, 396 (2013).

    Article  Google Scholar 

  40. ASTM C1557-14, C1557-14 “Standard Test Method for Tensile Strength and Young’s Modulus of Fibers”, 2014.

  41. UNI/EN-196-1, “Methods of Testing Cement — Part 1: Determination of Strength”, 2005.

  42. UNI/EN-12390-3, “Testing Hardened Concrete — Part 3: Compressive Strength of Test Specimens”, 2012.

  43. A. J. Lewry and J. Williamson, J. Mater. Sci., 29, 6085 (1994).

    Article  CAS  Google Scholar 

  44. S. Eve, M. Gomina, A. Gmouh, A. Samdi, R. Moussa, and G. Orange, J. Eur. Ceram. Soc., 22, 2269 (2002).

    Article  CAS  Google Scholar 

  45. M. Kunieda, N. Ueda, and H. Nakamura, Constr. Build. Mater., 67, 315 (2014).

    Article  Google Scholar 

  46. S. Eve, M. Gomina, J. P. Jernot, J. C. Ozouf, and G. Orange, J. Eur. Ceram. Soc., 27, 3517 (2007).

    Article  CAS  Google Scholar 

  47. L. Alameda, V. Calderón, C. Junco, A. Rodríguez, J. Gadea, and S. Gutiérrez-González, Mater. Constr., doi: https://doi.org/10.3989/mc.2016.06015 (2016).

  48. G. Li, Y. Yu, Z. Zhao, J. Li, and C. Li, Cem. Concr. Res., 33, 43 (2003).

    Article  CAS  Google Scholar 

  49. O. Gencel, J. J. Del Coz Diaz, M. Sutcu, F. Koksal, F. P. Álvarez Rabanal, and G. Martínez-Barrera, Constr. Build. Mater., 113, 732 (2016).

    Article  CAS  Google Scholar 

  50. P. S. Song, S. Hwang, and B. C. Sheu, Cem. Concr. Res., 35, 1546 (2005).

    Article  CAS  Google Scholar 

  51. M. Nili and V. Afroughsabet, Constr. Build. Mater., 24, 927 (2010).

    Article  Google Scholar 

  52. F. Fraternali, V. Ciancia, R. Chechile, G. Rizzano, L. Feo, and L. Incarnato, Compos. Struct., 93, 2368 (2011).

    Article  Google Scholar 

  53. O. Karahan and C. D. Atiş, Mater. Des., 32, 1044 (2011).

    Article  CAS  Google Scholar 

  54. S. B. Kim, N. H. Yi, H. Y. Kim, J. H. J. Kim, and Y. C. Song, Cem. Concr. Compos., 32, 232 (2010).

    Article  CAS  Google Scholar 

  55. D. A. Silva, A. M. Betioli, P. J. P. Gleize, H. R. Roman, L. A. Gómez, and J. L. D. Ribeiro, Cem. Concr. Res., 35, 1741 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was funded through the ERDF Interreg VB Northern Periphery and Arctic (NPA) Programme 2014–2020 and was part of the projects Circular Ocean (Grant no. 21) and Blue Circular Economy (Grant no. 299). The authors would like to acknowledge Master student Pernille Andersen for helping with the laboratory work, and the Danish recycling company, Plastix A/S, who kindly provided the R-PE fibres used in the test programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. G. Bertelsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertelsen, I.M.G., Ottosen, L.M. Recycling of Waste Polyethylene Fishing Nets as Fibre Reinforcement in Gypsum-based Materials. Fibers Polym 23, 164–174 (2022). https://doi.org/10.1007/s12221-021-9760-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-9760-3

Keywords

Navigation