Skip to main content
Log in

The Effect of Inner Layer Fiber Diameter and Fabric Structure on Transplanar Water Absorption and Transfer of Double-layered Knitted Fabrics

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

It is a prerequisite of sportswear fabrics to not only absorb plenty of water, but also transfer it to the environment as fast as it is possible. The present study examines water absorption and transfer of double-layered polyester/cotton fabrics. It intends to determine the simultaneous effect of fiber diameter and fabric structure of inner layer (polyester layer) on water management properties of these fabrics. The controversial effect of fiber fineness on water absorption capacity is critically discussed. The results revealed the key role of stitch type on the liquid water behavior; Fabrics with miss stitch in their inner layer had the least absorption capacity (mass of absorbed water into a known area of fabric) and the highest evaporation rate which are two determining factors in comfort sensation. Decreasing the inner layer fiber diameter decreased the rate of evaporation significantly. Comparing the initial rate of absorption suggests faster transfer of liquid through fabrics with coarser fibers. However, the effect of fiber fineness on the absorption capacity was found dependent on the structure of the fabric which should be considered for interpretation of the results. Overall, S3PC was the most comfortable fabric among the samples examined in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Arens and H. Zhang in “Thermal and Moisture Transport in Fibrous Materials” (N. Pan and P. Gibson Eds.), CRC Press, 2006.

  2. X. Qian, Ph. D. Dissertation, The Hong Kong Polytechnic University, 2005.

  3. B. Das, A. Das, V. K. Kothari, R. Fanguiero, and M. Araujo, AUTEX Res. J., 7, 100 (2007).

    Google Scholar 

  4. H. R. Long, Int. J. Cloth. Sci. Technol., 11, 198 (1999).

    Article  Google Scholar 

  5. M. Wallace, J. Text. App. Technol. Manag., 2, 2002.

  6. M. Mokhtari Yazdi, D. Semnani, and M. Sheikhzadeh, J. Appl. Polym. Sci., 114, 1731 (2009).

    Article  Google Scholar 

  7. N. Özdil, G. Süpüren, G. Ozçelik, and J. Průchová, J. Text. App. Tekstil ve Konfeksiyon, 19, 218 (2009).

    Google Scholar 

  8. J. Hu, Y. Li, K. W. Yeung, A. S. W. Wong, and W. Xu, Text. Res. J., 75, 57 (2005).

    Article  CAS  Google Scholar 

  9. S. Yoo and R. L. Barker, Text. Res. J., 75, 523 (2005).

    Article  CAS  Google Scholar 

  10. Y. Zhang, H. P. Wang, and Y. H. Chen, J. Appl. Polym. Sci., 102, 1405 (2006).

    Article  CAS  Google Scholar 

  11. B. G. Yao, Y. Li, J. Y. Hu, Y. L. Kwok, and K. W. Yeung, Polym. Test., 25, 677 (2006).

    Article  CAS  Google Scholar 

  12. X. Q. Dai, R. Imamura, G. L. Liu, and F. P. Zhou, Eur. J. Appl. Phys., 104, 337 (2008).

    Article  Google Scholar 

  13. M. Sarkar, J. Fan, and X. Qian, Meas. Sci. Technol., 18, 1465 (2007).

    Article  CAS  Google Scholar 

  14. M. K. Sarkar, J. T. Fan, Y. C. Szeto, and X. M. Tao, Fiber. Polym., 10, 343 (2009).

    Article  Google Scholar 

  15. M. Sarkar, F. Jintu, Y. C. Szeto, and X. Tao, Text. Res. J., 79, 657 (2009).

    Article  CAS  Google Scholar 

  16. C. Qing, F. Jintu, M. Sarkar, and G. Jiang, Text. Res. J., 80, 568 (2010).

    Article  Google Scholar 

  17. B. Das, A. Das, V. K. Kothari, R. Fangueiro, and M. de Araújo, AUTEX Res. J., 7, 194 (2007).

    Google Scholar 

  18. Q. Zhuang, S. C. Harlock, and D. B. Brook, Text. Res. J., 72, 727 (2002).

    Article  CAS  Google Scholar 

  19. C. Hong and J. B. Kim, Fiber. Polym., 8, 218 (2007).

    Article  Google Scholar 

  20. Y. L. Hsieh, Text. Res. J., 65, 299 (1995).

    Article  CAS  Google Scholar 

  21. B. Miller and I. Tyomkin, Text. Res. J., 54, 706 (1984).

    Article  CAS  Google Scholar 

  22. E. Kissa, Text. Res. J., 66, 660 (1996).

    Article  CAS  Google Scholar 

  23. M. G. Çil, U. B. Nergis, and C. Candan, Text. Res. J., 79, 917 (2009).

    Article  Google Scholar 

  24. E. W. Washburn, Phys. Rev., 17, 273 (1921).

    Article  Google Scholar 

  25. M. Datta Roy, R. Chattopadhyay, and S. K. Sinha, J. Inst. Eng. (India): Series E, 98, 155 (2017).

    CAS  Google Scholar 

  26. M. Datta Roy, R. Chattopadhyay, and S. K. Sinha, J. Inst. Eng. (India): Series E, 99, 1 (2018).

    CAS  Google Scholar 

  27. S. M. Ishtiaque, A. Das, and A. K. Kundu, J. Text. Inst., 105, 736 (2014).

    Article  Google Scholar 

  28. S. H. Kim, J. H. Lee, D. Y. Lim, and H. Y. Jeon, Text. Res. J., 73, 455 (2003).

    Article  CAS  Google Scholar 

  29. D. Das, A. K. Pradhan, and B. Pourdeyhimi, J. Appl. Polym. Sci., 126, 1053 (2012).

    Article  CAS  Google Scholar 

  30. Y. Jhanji, D. Gupta, and V. K. Kothari, J. Text. Inst., 106, 663 (2015).

    Article  CAS  Google Scholar 

  31. Q. Chen, Kp. M. Tang, P. Ma, and G. Jiang, Fiber. Polym., 17, 1421 (2016).

    Article  Google Scholar 

  32. R. K. Varshney, V. K. Kothari, and S. Dhamija, J. Text. Inst., 101, 495 (2010).

    Article  CAS  Google Scholar 

  33. P. Birrfelder, M. Dorrestijn, C. Roth, and R. M. Rossi, Text. Res. J., 83, 1477 (2013).

    Article  CAS  Google Scholar 

  34. B. Das, A. Das, V. K. Kothari, R. Fanguiero, and M. de Araújo, Fiber. Polym., 9, 225 (2008).

    Article  Google Scholar 

  35. D. Raja, C. V. Koushik, G. Ramakrishnan, V. Subramaniam, and V. Ramesh Babu, Fibres Text. East. Eur., 93, 72 (2012).

    Google Scholar 

  36. R. B. Turan and A. Okur, Text. Res. J., 83, 700 (2012).

    Article  Google Scholar 

  37. C. H. Zhu and M. Takatera, 10th WSEAS International Conference on Fluid Mechanics, Italy, 2013.

  38. B. Kumar and A. Das, J. Text. Inst., 105, 850 (2014).

    Article  CAS  Google Scholar 

  39. R. M. Rossi, R. Stampfli, A. Psikuta, I. Rechsteiner, and P. A. Bruhwiler, Text. Res. J., 81, 1549 (2011).

    Article  CAS  Google Scholar 

  40. X. Wang, Z. Huang, D. Miao, J. Zhao, J. Yu, and B. Ding, ACS Nano, 13, 1060 (2019).

    CAS  PubMed  Google Scholar 

  41. C. Prahsarn, Ph. D. Dissertation, North Carolina State University, 2001.

  42. E. Öner and A. Okur, J. Text. Inst., 104, 1164 (2013).

    Article  Google Scholar 

  43. F. Hajiani, S. M. Hosseini, N. Ansari, and A. A. A. Jeddi, Fiber. Polym., 11, 798 (2010).

    Article  CAS  Google Scholar 

  44. A. D. Gun, Fiber. Polym., 12, 1083 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohammad Hosseini Varkiani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousefi, B., Varkiani, S.M.H., Saharkhiz, S. et al. The Effect of Inner Layer Fiber Diameter and Fabric Structure on Transplanar Water Absorption and Transfer of Double-layered Knitted Fabrics. Fibers Polym 22, 578–586 (2021). https://doi.org/10.1007/s12221-021-9430-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-9430-5

Keywords

Navigation