Skip to main content
Log in

Investigation on Stiffness of Finished Stretch Plain Knitted Fabrics Using Fuzzy Decision Trees and Artificial Neural Networks

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Stiffness is one of the most important utility properties of textile materials and plays a significant role in well-being due to its influence on physiological comfort [1]. On that point are a great deal of structural properties of textile materials also operating parameters (knitting+finishing) influencing stiffness and there are also statistically significant interactions between the principal factors determining the stiffness of textile materials. As part of our research, we proposed to facilitate the industry adjust the most relevant operating parameters before actual manufacturing to reach the desired stiffness and satisfy consumers. It warrants the application of artificial neural nets (ANNs) to predict the stiffness of finished knitted fabrics and the utilization of the Fuzzy Decision Tree in the selection procedure, to puzzle out the problem of insufficient data and boil down the complexity of predictive models. Moreover, a virtual leave one out approach dealing with overfitting phenomenon and allowing the selection of the optimal neural network architecture was applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Kan and C. Zhou, “High Performance Technical Textiles: Marine Textiles and Composites”, pp.385–406, 2019.

  2. G. Grover, M. A. Sultan, and S. M. Spivak, J. Text. Inst., 84, 486 (1993).

    Article  Google Scholar 

  3. R. H. Brand, Text. Res. J., 34, 791 (1964).

    Article  Google Scholar 

  4. C. L. Hui, T. W. Lau, S. F. Ng, and K. C. C. Chan, Text. Res. J., 74, 375 (2004).

    Article  CAS  Google Scholar 

  5. K. A. Brooks, J. Text. Inst., 82, 285 (1991).

    Article  Google Scholar 

  6. P. L. Chen, R. L. Barker, G. W. Smith, and B. Scruggs, Text. Res. J., 64, 200 (1992).

    Article  Google Scholar 

  7. Y. Li, J. H. Keighley, J. E. McIntyre, and I. F. G. Hampton, J. Text. Inst., 82, 277 (1991).

    Article  Google Scholar 

  8. M. Matsudaira and M. Matsui, J. Text. Inst., 83, 133 (1992).

    Article  Google Scholar 

  9. M. Matsudaira, J. Text. Inst., 83, 24 (1992).

    Article  Google Scholar 

  10. Y. E. Macgahzy and R. M. Jr. Broughton, Text. Res. J., 62, 218 (1992).

    Article  Google Scholar 

  11. R. S. Hallos, M. S. Bumip, and A. Weir, J. Text. Inst., 81, 15 (1990).

    Article  Google Scholar 

  12. J. J. F. Knapton, Text. Res. J., 39, 889 (1968).

    Article  Google Scholar 

  13. R. J. Hamilton and R. Postle, Text. Res. J., 44, 336 (1974).

    Article  Google Scholar 

  14. J. A. Smirfitt, J. Text. Inst., 56, 298 (1965).

    Article  Google Scholar 

  15. R. J. Hamilton and R. Postle, Text. Res. J., 44, 336 (1974).

    Article  Google Scholar 

  16. W. S. Howorth and P. H. Oliver, J. Text. Inst., 49, 540 (1958).

    Article  Google Scholar 

  17. T. W. Lau, P. C. L. Hui, F. S. F. Ng, and K. C. C. Chan, Comput. Ind., 57, 82 (2006).

    Article  Google Scholar 

  18. G. V. Civille and C. A. Dus, J. Sens. Stud., 5, 19 (1990).

    Article  Google Scholar 

  19. X. Zeng and L. Koehl, Int. J. Intell. Syst., 18, 355 (2003).

    Article  Google Scholar 

  20. F. Fayala, H. Alibi, A. Jemni, and X. Zeng, Fiber. Polym., 15, 855 (2014).

    Article  CAS  Google Scholar 

  21. H. Alibi, F. Fayala, N. Bhouri, A. Jemni, and X. Zeng, J. Tex. Inst., 104, 766 (2013).

    Article  Google Scholar 

  22. A. Babay, M. Cheikhrouhou, B. Vermeulen, B. Rabenasolo, and J. M. Castelain, J. Text. Inst., 96, 185 (2005).

    Article  CAS  Google Scholar 

  23. M. Tayefi, H. Esmaeili, M. S. Karimian, A. A. Zadeh, M. Ebrahimi, M. Safarian, M. Nematy, S. M. R. Parizadeh, G. A. Ferns, and M. Ghayour-Mobarhan, Comput. Meth. Prog. Bio., 139, 83 (2017).

    Article  Google Scholar 

  24. W. Yang, X. Reziwanguli, J. Xu, P. Wang, J. Hu, and X. Liu, Proceedings 4th WARTIA, 173 (2018).

  25. A. A. Gharehaghaji, M. Shanbeh, and M. Palhang, Text. Res. J., 77, 565 (2007).

    Article  CAS  Google Scholar 

  26. Z. Khan, A. E. K. Lim, L. Wang, X. Wang, and R. Beltran, Text. Res. J., 79, 714 (2009).

    Article  CAS  Google Scholar 

  27. J. A. Wehner, B. Miller, and L. Rebenfeld, Text. Res. J., 58, 581 (1988).

    Article  CAS  Google Scholar 

  28. Y. Oussar, G. Monari, and G. Dreyfus, Neural Comput., 16, 419 (2004).

    Article  Google Scholar 

  29. H. Alibi, F. Fayala, A. Jemni, and X. Zeng, Special Topics & Reviews in Porous Media, 3, 35 (2012).

    Article  Google Scholar 

  30. C. Huang and C. Moraga, Int. J. Approx. Reason., 35, 137 (2004).

    Article  Google Scholar 

  31. S. J. Raudys and A. K. Jain, IEEE T Pattern Anal., 13, 252 (1991).

    Article  Google Scholar 

  32. J. L. Yuan and T. L. Fine, IEEE T Neural Networ, 9, 266 (1998).

    Article  CAS  Google Scholar 

  33. P. Vroman, L. Koehl, X. Zeng, and T. Chen, Int. J. Comput. Int. Sys., 1, 329 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rania Baghdadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghdadi, R., Alibi, H., Fayala, F. et al. Investigation on Stiffness of Finished Stretch Plain Knitted Fabrics Using Fuzzy Decision Trees and Artificial Neural Networks. Fibers Polym 22, 550–558 (2021). https://doi.org/10.1007/s12221-021-9314-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-9314-8

Keywords

Navigation