Skip to main content
Log in

The Interface Adhesive Properties and Mechanical Properties of Shape Memory Alloy Composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The interface adhesive properties and mechanical properties of shape memory alloy composites were experimentally investigated. The two diameters of shape memory alloy (SMA) wire were surface modified by sandpaper, acid corrosion and alkali corrosion. Pull-out tests of single fiber and tensile tests of composite laminates were carried out. The results show that SMA after acid corrosion is the most effective to improve interface adhesive properties. With the increase of SMA diameter, the contact area between the matrix and SMA increases, so the degree of interfacial bonding is more obvious. The mechanical properties of SMA-modified composite laminates polished by sandpaper have been fully improved. SMA plays a full role in tensile resistance as long as the interface adhesive strength is large enough. Scanning electron microscopy shows that the surface roughness of the SMA wire treated in H2SO4 is more obvious than the other two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, Mater. Des., 56, 1078 (2014).

    Article  Google Scholar 

  2. Y. Q. Jia, Z. D. Lu, L. Z. Li, and Z.-L. Wu, IOP Conf., 392, 022009 (2018).

    Google Scholar 

  3. J. Y. Xue, C. W. Wu, X. C. Zhang, and Y. T. Zhang, Constr. Build. Mater., 241, 118136 (2020).

    Article  Google Scholar 

  4. K. Dudek, M. Dulski, and B. Łosiewicz, Materials, 13, 1648 (2020).

    Article  CAS  Google Scholar 

  5. A. Dehghani and F. Aslani, Constr. Build. Mater., 252, 119061 (2020).

    Article  CAS  Google Scholar 

  6. R. X. Zhang, Q. Q. Ni, T. Natsuki, and M. Iwamoto, Compos. Struct., 79, 90 (2005).

    Article  Google Scholar 

  7. S. Stupkiewicz, M. Rezaee-Hajidehi, and H. Petryk, Int. J. Solids Struct., 221, 77 (2020).

    Article  Google Scholar 

  8. S. M. R. Khalili, M. B. Dehkordi, E. Carrera, and M. Shariyat, Compos. Struct., 96, 243 (2013).

    Article  Google Scholar 

  9. V. Birman, Int. J. Solids Struct., 45, 320 (2008).

    Article  CAS  Google Scholar 

  10. G. Q. Yuan, Y. Y. Bai, Z. M. Jia, D. Hui, and K. T. Lau, Compos. Part B-Eng., 106, 99 (2016).

    Article  CAS  Google Scholar 

  11. H. L. He, P. Y. Yang, Z. W. Duan, Z. Q. Wang, and Y. Liu, Compos. Sci. Technol., 199, 108372 (2020).

    Article  CAS  Google Scholar 

  12. L. M. Zhao, X. Feng, X. J. Mi, Y. F. Li, H. F. Xie, and X. Q. Yin, Appl. Surf. Sci., 320, 670 (2014).

    Article  CAS  Google Scholar 

  13. S. M. R. Khalili and A. Saeedi, Mech. Adv. Mater. Struct., 24, 490 (2017).

    Article  CAS  Google Scholar 

  14. D. Shan, X. Y. He, C. Q. Fang, H. Shao, Y. L. Cheng, and N. L. An, J. Alloys Compd., 699, 345 (2017).

    Article  CAS  Google Scholar 

  15. E. Spārniņš, J. Andersons, V. Michaud, and Y. Leterrier, Smart Mater. Struct., 24, 125038 (2015).

    Article  Google Scholar 

  16. Z. Q. Wang, Y. F. Liu, H. Li, and M. Sun, Compos. Interfaces, 25, 169 (2018).

    Article  CAS  Google Scholar 

  17. H. Fathi, M. M. Shokrieh, and A. Saeedi, Compos. Part B-Eng., 183, 107730 (2020).

    Article  CAS  Google Scholar 

  18. S. Samal, O. Tyc, L. Heller, P. Šittner, M. Malik, P. Poddar, M. Catauro, and I. Blanco, Appl. Sci., 10, 2172 (2020).

    Article  CAS  Google Scholar 

  19. Z. Q. Wang, Y. F. Liu, H. Q. Lv, and B. Yang, Polym. Compos., 39, 3040 (2018).

    Article  CAS  Google Scholar 

  20. A. Lebied, B. Necib, M. L. Sahli, J. C. Gelin, and T. Barrière, Int. J. Adv. Manuf Tech., 86, 359 (2016).

    Article  Google Scholar 

  21. S. M. Daghash and O. E. Ozbulut, Smart Mater. Struct., 27, 065003 (2018).

    Article  Google Scholar 

  22. K. M. R. Eslami-Farsani and S. M. R. Khalili, Polym. Compos., 39, E2454 (2018).

    Article  Google Scholar 

  23. E. Wang, C. Guo, P. Zhou, C. F. Lin, X. X. Han, and F. C. Jiang, Mater. Des., 95, 446 (2016).

    Article  CAS  Google Scholar 

  24. H. S. Lei, Z. Q. Wang, L. Y. Tong, B. Zhou, and J. Fu, Compos. Struct., 101, 301 (2013).

    Article  Google Scholar 

  25. Z. Q. Wang, L. D. Xu, X. Y. Sun, M. F. Shi, and J. B. Liu, Compos. Struct., 178, 311 (2017).

    Article  Google Scholar 

  26. L. D. Xu, M. F. Shi, Z. Q. Wang, X. Y. Zhang, and G. Xue, Mater. Today Commun., 26, 101711 (2021).

    Article  CAS  Google Scholar 

  27. L. D. Xu, M. F. Shi, X. Y. Sun, Z. Q. Wang, and B. Yang, Adv. Eng. Mater, 20, 1700646 (2017).

    Article  Google Scholar 

  28. M. F. Shi, J. T. Zhao, X. Y. Zhang, H. Wang, Z. Q. Wang, G. Xue, L. D. Xu, and X. Sun, Mater. Today Commun., 27, 102293 (2021).

    Article  CAS  Google Scholar 

  29. ASTM. D3039-14, ASTM International, United States, 2014.

  30. ASTM F2516 ASTM International, United States, 2014.

  31. Y. F. Liu, Z. Q. Wang, H. Li, M. Sun, F. X. Wang, and B. J. Chen, Materials, 11, 70 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of Natural Science Fund of the Inner Mongolia Autonomous Region, Grant NO. 2020BS01007 and 2020BS01008.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lidan Xu or Xiaoyu Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Zhao, J., Liu, J. et al. The Interface Adhesive Properties and Mechanical Properties of Shape Memory Alloy Composites. Fibers Polym 23, 273–281 (2022). https://doi.org/10.1007/s12221-021-3292-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-3292-8

Keywords

Navigation