Skip to main content
Log in

Experimental Investigation and Mathematical Modeling of Longitudinally Placed Natural Fiber Reinforced Polymeric Composites including Interphase Volume Fraction

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The influence of interphase on the tensile property of composite is examined in the present study. For this, fabrication of composite (FOC) is carried out using natural fibers: bamboo fiber and jute fiber and polyester resin as per the hand layup technique. The fibers are arranged in a longitudinal direction with varying the volume fraction of fiber (vf). The tensile testing of fibers, polyester and composites are held on the universal testing machine (UTM) and evaluated experimental tensile properties: tensile strength (TS) and elastic modulus (E). The mathematical models are proposed to measure the influence of interphase on the longitudinal elastic modulus of composite (Ecl) for longitudinally placed unidirectional fiber-reinforced polymer composites (LUDFPC) with varying interphase volume fraction (vi). The different interphase property variations: linear variation, hyperbolic variation, parabolic variation, powerlaw variation and exponential are considered in the modeling of composite and measure its effect on Ecl. The comparative study of proposed models with other researchers’ models is carried out. The validation of developed models is carried out using other researchers’ experimental data. The present study signifies the important outcome as vi should be around 15 % to 20 % of vf to predict Ecl; Parabolic variation is recommended for the prediction of Ecl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ef :

Elastic modulus of fiber

Ei :

Elastic modulus of interphase

Em :

Elastic modulus of matrix

Ec :

Elastic modulus of composite

Ecl :

Longitudinal elastic modulus of composite

Ect :

Transverse elastic modulus of composite

vf :

Volume fraction of fiber

vi :

Interphase volume fraction OR Volume fraction of interphase

vm :

Volume fraction of matrix

Vfv :

Volume of fiber

Vf1 :

New volume of fiber

Vm :

Volume of matrix

Vc :

Volume of composite

rf :

Radius of fiber

ri :

Radius of interphase

rf1 :

New radius of fiber

ti :

Thickness of interphase

wf :

Weight fraction of fiber

wm :

Weight fraction of matrix

ρf :

Density of fiber

ρm :

Density of matrix

TS:

Tensile strength

FS:

Flexural strength

FM:

Flexural modulus

RVE:

Representative volume element

NFC:

Natural fiber composites

LUDBPC-1:

Longitudinally placed unidirectional bamboo/polyester composites at vfl

LUDBPC-2:

Longitudinally placed unidirectional bamboo/polyester composites at vf2

LUDBPC-3:

Longitudinally placed unidirectional bamboo/polyester composites at vf3

LUDBPC-4:

Longitudinally placed unidirectional bamboo/polyester composites at vf4

LUDJPC-1:

Longitudinally placed unidirectional jute/polyester composites at vf1

LUDJPC-2:

Longitudinally placed unidirectional jute/polyester composites at vf2

LUDJPC-3:

Longitudinally placed unidirectional jute/polyester composites at vf3

LUDJPC-4:

Longitudinally placed unidirectional jute/polyester composites at vf4

LUDFPC:

Longitudinally placed unidirectional fiber-reinforced polymer composites

LUDBPC:

Longitudinally placed unidirectional bamboo/polyester composites

LUDJPC:

Longitudinally placed unidirectional jute polyester composites

FEC:

Flax/Epoxy Composites

BPC:

Banana/Polyester Composites

References

  1. A. K. Kaw, “Mechanics of Composite Materials”, 2nd ed., CRC Press, New York, 2006.

    Google Scholar 

  2. D. Hristozov, L. Wroblewski, and P. Sadeghian, Compos. Part B-Eng., 95, 82 (2016).

    Article  CAS  Google Scholar 

  3. H. H. Parikh and P. P. Gohil, J. Reinf. Plast. Comp., 34, 1340 (2015).

    Article  CAS  Google Scholar 

  4. A. Takari, A. R. Ghasemi, M. Hamadanian, M. Sarafrazi, and A. Najafidoust, Polym. Test., 93, 106890 (2021).

    Article  CAS  Google Scholar 

  5. M. Sarafrazi, A. R. Ghasemi, and M. Hamadanian, J. Appl. Polym. Sci., 137, 49425 (2020).

    Article  CAS  Google Scholar 

  6. M. Sarafrazi, M. Hamadanian, and A. R. Ghasemi, Mech. Mater., 138, 103154 (2019).

    Article  Google Scholar 

  7. M. Ashrafi, A. R. Ghasemi, and M. Hamadanian, Polym. Test., 78, 105946 (2019).

    Article  Google Scholar 

  8. A. K. Bledzki and A. Jaszkiewicz, Compos. Sci. Technol., 70, 1687 (2010).

    Article  CAS  Google Scholar 

  9. S. Chokshi, P. Gohil, A. Lalakiya, P. Patel, and A. Parmar, Mater. Today-Proc., 27, 1218 (2020).

    Article  CAS  Google Scholar 

  10. J. M. Park, S. T. Quang, B. S. Hwang, and K. L. DeVries, Compos. Sci. Technol., 66, 2686 (2006).

    Article  CAS  Google Scholar 

  11. J. P. Schneider, G. E. Myers, C. M. Clemons, and B. W. English, J. Vinyl Addit. Techn., 1, 103 (1995).

    Article  CAS  Google Scholar 

  12. P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol., 63, 1259 (2003).

    Article  CAS  Google Scholar 

  13. M. Garcia, I. Garmendia, and J. García, J. Appl. Polym. Sci., 107, 2994 (2008).

    Article  CAS  Google Scholar 

  14. S. Chokshi and G. Patel, Int. J. Curr. Eng. Sci. Res., 5, 28 (2018).

    Google Scholar 

  15. G. A. Patel and S. R. Chokshi, Int. J. Appl. Eng. Res., 13, 7210 (2018).

    Google Scholar 

  16. N. Sgriccia, M. C. Hawle, and M. Misra, Compos. Part A-Appl. S., 39, 1632 (2008).

    Article  Google Scholar 

  17. K. L. Pickering, M. A. Efendy, and T. M. Le, Compos. Part A-Appl. S., 83, 98 (2016).

    Article  CAS  Google Scholar 

  18. S. Chokshi, V. Parmar, P. Gohil, and V. Chaudhary, J. Nat. Fibers, doi: https://doi.org/10.1080/15440478.2020.1848738 (2020).

  19. D. K. K. Cavalcanti, M. D. Banea, J. S. S. Neto, R. A. A. Lima, L. F. M. Da Silva, and R. J. C. Carbas, Compos. Part B-Eng, 175, 107149 (2019).

    Article  CAS  Google Scholar 

  20. H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, Compos. Part B-Eng., 42, 856 (2011).

    Article  Google Scholar 

  21. L. Mohammed, M. N. Ansari, G. Pua, M. Jawaid, and M. S. Islam, Int. J. Polym. Sci., 2015, 1 (2015).

    Article  Google Scholar 

  22. M. J. John and S. Thomas, Carbohyd. Polym., 71, 343 (2008).

    Article  CAS  Google Scholar 

  23. R. W. H. Heijenrath and A. A. J. M. Peijs, Adv. Compos. Lett., 5, 81 (1996).

    Article  Google Scholar 

  24. S. O. Amiandamhen, M. Meincken, and L. Tyhoda, Fiber. Polym., 21, 677 (2020).

    Article  CAS  Google Scholar 

  25. J. P. Johnston, B. Koo, N. Subramanian, and A. Chattopadhyay, Compos. Part B-Eng., 111, 27 (2017).

    Article  CAS  Google Scholar 

  26. R. E. Swain, K. L. Reifsnider, K. Jayaraman, and M. El-Zein, J. Thermoplast. Compos., 3, 13 (1990).

    Article  Google Scholar 

  27. P. P. Gohil and A. A. Shaikh, J. Reinf. Plast. Comp., 29, 685 (2010).

    Article  CAS  Google Scholar 

  28. A. Tabatabaeian, M. Lotfi, A. R. Ghasemi, and S. Roohollahi, Eng. Struct., 228, 111490 (2021).

    Article  Google Scholar 

  29. A. R. Ghasemi and M. Mohammadi-Fesharaki, Polym. Bull., 76, 5751 (2019).

    Article  CAS  Google Scholar 

  30. A. R. Ghasemi, M. M. Mohammadi, and M. Mohandes, Compos. Part B-Eng., 77, 519 (2015).

    Article  CAS  Google Scholar 

  31. A. R. Ghasemi and M. M. Fesharaki, Iran. Polym. J., 27, 965 (2018).

    Article  CAS  Google Scholar 

  32. R. Hill, J. Mech. Phys. Solids, 12, 199 (1964).

    Article  Google Scholar 

  33. M. B. Riley and J. M. Whitney, Aiaa J., 4, 1537 (1966).

    Article  Google Scholar 

  34. B. Madsen and H. Lilholt, Compos. Sci. Technol., 63, 1265 (2003).

    Article  CAS  Google Scholar 

  35. S. B. Brahim and R. B. Cheikh, Compos. Sci. Technol., 67, 140 (2007).

    Article  Google Scholar 

  36. J. M. Berthelot, “Matériaux composites: comportement mécanique et analyse des structures”, 2nd ed., Issy-les-Moulineaux (Hauts-de-Seine), Masson, Paris, 1999.

  37. M. Manera, J. Compos. Mater., 11, 235 (1977).

    Article  CAS  Google Scholar 

  38. G. Coroller, A. Lefeuvre, A. Le Duigou, A. Bourmaud, G. Ausias, T. Gaudry, and C. Baley, Compos. Part A-Appl. S., 51, 62 (2013).

    Article  CAS  Google Scholar 

  39. Y. Cao, W. Wang, and Q. Wang, Mater. Res. Innov., 18, S2–354 (2014).

    Google Scholar 

  40. N. K. Anifantis, Compos. Sci. Technol., 60, 1241 (2000).

    Article  Google Scholar 

  41. C. S. Chouchaoui and M. L. Benzeggagh, Compos. Sci. Technol., 57, 617 (1997).

    Article  CAS  Google Scholar 

  42. L. T. Drzal, M. Madhukar, and M. C. Waterbury, Compos. Struct., 27, 65 (1994).

    Article  Google Scholar 

  43. R. F. Gibson, S. K. Chaturvedi, and C. T. Sun, J. Mater. Sci., 17, 3499 (1982).

    Article  CAS  Google Scholar 

  44. Y. A. Gowayed, J. Compos. Tech. Res., 19, 168 (1997).

    Article  CAS  Google Scholar 

  45. N. L. Hancox, J. Mater. Sci., 10, 234 (1975).

    Article  CAS  Google Scholar 

  46. K. Jayaraman and K. L. Reifsnider, Compos. Sci. Technol., 47, 119 (1993).

    Article  CAS  Google Scholar 

  47. M. Lagache, A. Agbossou, J. Pastor, and D. Muller, J. Compos. Mater., 28, 1140 (1994).

    Article  Google Scholar 

  48. A. Matzenmiller and S. Gerlach, Compos. Part B-Eng., 37, 117 (2005).

    Article  Google Scholar 

  49. P. S. Theocaris, Colloid. Polym. Sci., 262, 929 (1984).

    Article  CAS  Google Scholar 

  50. J. L. Thomason, Composites, 26, 487 (1995).

    Article  CAS  Google Scholar 

  51. Z. Hashin and B. W. Rosen, J. Appl. Mech., 31, 223 (1964).

    Article  Google Scholar 

  52. L. J. Broutman and B. D. Agarwal, Poly. Eng. Sci., 14, 581 (1974).

    Article  CAS  Google Scholar 

  53. G. Wacker, A. K. Bledzki, and A. Chate, Compos. Part A-Appl. S., 29, 619 (1998).

    Article  Google Scholar 

  54. P. P. Gohil, D. Dissertation, SVNIT, India, 2010.

  55. Y. Mikata and M. Taya, J. Appl. Mech., 52, 19 (1985).

    Article  Google Scholar 

  56. A. Di Anselmo, M. L. Accorsi, and A. T. DiBenedetto, Compos. Sci. Technol., 44, 215 (1992).

    Article  CAS  Google Scholar 

  57. W. E. Morton and J. W. S. Hearle, “Physical Properties of Textile Fibres”, Woodhead Publishing Limited, London, 1975.

    Google Scholar 

  58. M. Truong, W. Zhong, S. Boyko, and M. Alcock, J. Text. I., 100, 525 (2009).

    Google Scholar 

  59. ASTM D638–10, Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, 2010.

    Google Scholar 

  60. ASTM D790–10, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, 2010.

    Google Scholar 

  61. ASTM D3039/3039M-08, Standard Test Method for Tensile Properties of Single Textile Fibers, ASTM International, West Conshohocken, PA, 2008.

    Google Scholar 

  62. ASTM D3822–07, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials, ASTM International, West Conshohocken, PA, 2007.

    Google Scholar 

  63. P. Gohil and A. A. Shaikh, Nanosci. Technol.: Int. J., 1, 223 (2010).

    Google Scholar 

  64. K. Ramanaiah, A. R. Prasad, and K. H. Chandra Reddy, Int. J. Polym. Anal. Ch., 18, 126 (2013).

    Article  CAS  Google Scholar 

  65. G. N. Karam, Composites, 22, 84 (1991).

    Article  CAS  Google Scholar 

  66. A. H. Abdullah, A. Khalina, and A. Ali, Polym-Plast. Technol., 50, 1362 (2011).

    Article  CAS  Google Scholar 

  67. H. H. Chiu and W. B. Young, Fiber. Polym., 21, 2938 (2020).

    Article  CAS  Google Scholar 

  68. S. Tyagi, M. S. Kumar, and M. Rakesh, Int. J. Appl. Eng. Res., 13, 12157 (2018).

    Google Scholar 

  69. H. W. He and F. Gao, Int. J. Polym. Anal. Ch., 20, 180 (2015).

    Article  CAS  Google Scholar 

  70. M. Z. Rong, M. Q. Zhang, Y. Liu, G. C. Yang, and H. M. Zeng, Compos. Sci. Technol., 61, 1437 (2001).

    Article  CAS  Google Scholar 

  71. M. K. Gupta and R. K. Srivastava, Proc. Mat. Sci., 5, 2434 (2014).

    CAS  Google Scholar 

  72. S. Biswas, S. Shahinur, M. Hasan, and Q. Ahsan, Procedia Engineer, 105, 933 (2015).

    Article  CAS  Google Scholar 

  73. D. Bolcu, G. Stanescu, and M. Ursache, Rom. Rep. Phys., 56, 3 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush Gohil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chokshi, S., Gohil, P. Experimental Investigation and Mathematical Modeling of Longitudinally Placed Natural Fiber Reinforced Polymeric Composites including Interphase Volume Fraction. Fibers Polym 23, 488–501 (2022). https://doi.org/10.1007/s12221-021-2087-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-2087-2

Keywords

Navigation