Skip to main content
Log in

Biodiverse Properties of Tannic Acid-Based Fibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Tannic acid (TA) is a plant-based polyphenolic molecule with enticing anti-oxidant, anti-bacterial, anti-inflammatory and anti-cancer features, making it a valuable material in bio-medicinal applications. To establish whether TA-based fibers are useful tools in potential medical textiles, e.g., as wound dressing material for prophylaxis against infections and diseases, TA fibers were prepared and employed in biological assays. TA fibers were prepared with 55 weight% TA in ethanol-DI water mixture and fabricated by the electrospinning technique. Bare TA-based fibers were examined and were 1.2±0.1 % non-hemolytic and had 8.7±1.7 blood clotting index up to 2 mg/ml concentration. Degradation of bare TA-based fibers was completed in 5 minutes; however, degradation of crosslinked TA-based fibers were 98.3±2.3 % and 83.1±5.4 % for TA-Ibu and TA in 168 hours. Anti-oxidant activity of TA-based fibers was investigated by TEAC, total phenol content (TPC) and total flavonoid content (TFC) assays. Bare TA fibers possessed the highest anti-oxidant activity of 5.7±0.5 mM trolox equivalent/g, 168.0±2.0 gallic acid equivalent µg/ml and 193.0±17.0 quercetin equivalent µg/ml. Anti-bacterial activity was investigated by the disc diffusion method and the highest inhibition zone diameter was measured as 3.5±0.2 cm against S. aureus (gram +) bacteria; however, the same fiber was detected as producing 2.2±0.5 cm zone diameter for E. coli (gram -) bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Guangming, Y. Fei, Y. Liu, T. Jihong, and D. Nan, Fiber. Polym., 28, 284 (2009).

    Google Scholar 

  2. J. Jing, S. Liang, Y. Yan, X. Tian, and X. Li, ACS Biomater. Sci. Eng., 5, 4601 (2019).

    Article  PubMed  CAS  Google Scholar 

  3. M. H. Peaslee and F. A. Einhelling, Food Chem., 135, 1708 (2012).

    Article  Google Scholar 

  4. C. Wu, T. Li, C. Liao, L. Li, and J. Yang, J. Mater. Chem. A., 5, 12782 (2017).

    Article  CAS  Google Scholar 

  5. B. Zhou, X. Hu, J. Zhu, Z. Wang, X. Wang, and M. Wang, Int. J. Biol. Macromol., 91, 68 (2016).

    Article  PubMed  CAS  Google Scholar 

  6. F. Liu, V. Kozlovskaya, O. Zavgorodnya, C. Martinez-Lopez, S. Catledge, and E. Kharlampieva, Soft Matter., 10, 9237 (2014).

    Article  PubMed  CAS  Google Scholar 

  7. N. Aelenei, M. I. Popa, O. Novac, G. Lisa, and L. Balaita, J. Mater. Sci. Mater. Med., 20, 1095 (2009).

    Article  PubMed  CAS  Google Scholar 

  8. M. Cipriano-Salazar, S. Rojas-Hernández, J. Olivares-Pérez, R. Jiménez-Guillén, B. Cruz-Lagunas, L. M. Camacho-Díaz, and A. E. Ugbogu, Microb. Pathog., 117, 255 (2018).

    Article  PubMed  CAS  Google Scholar 

  9. W. Yan, M. Shi, C. Dong, L. Liu, and C. Gao, Adv. Colloid Interface Sci., 284, 102267 (2020).

    Article  PubMed  CAS  Google Scholar 

  10. B. Kaczmarek, O. Mazur, O. Milek, M. Michalska-Sionkowska, A. Das, A. Jaiswal, J. Vishnu, K. Tiwari, A. Sionkowska, A. M. Osyczka, and G. Manivasagam, Fiber. Polym., 9, 249 (2020).

    CAS  Google Scholar 

  11. P. Taheri, R. Jahanmardi, M. Koosha, and S. Abdi, Int. J. Biol. Macromol., 154, 421 (2020).

    Article  PubMed  CAS  Google Scholar 

  12. W. Zhang, Z.-Y. Yang, R.-C. Tang, J.-P. Guan, and Y.-F. Qiao, J. Clean. Prod., 250, 119545 (2020).

    Article  CAS  Google Scholar 

  13. N. S. Khan, A. Ahmad, and S. Hadi, Chem. Biol. Interact., 125, 177 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. I. Perelshtein, E. Ruderman, A. Francesko, M. M. Fernandes, T. Tzanov, and A. Gedanken, Ultrason. Sonochem., 21, 1916 (2014).

    Article  PubMed  CAS  Google Scholar 

  15. L. Tan, X. Zhou, K. Wu, D. Yang, Y. Jiao, and C. Zhou, Int. J. Biol. Macromol., 159, 304 (2020).

    Article  PubMed  CAS  Google Scholar 

  16. H. Yang, L. He, S. Pan, H. Liu, and X. Hu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 210, 111 (2019).

    Article  CAS  Google Scholar 

  17. J. Zhang, Q. Song, X. Han, Y. Zhang, Y. Zhang, X. Zhang, X. Chu, F. Zhang, and L. Chu, Int. Immunopharmacol., 47, 95 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. S. Moradi, F. Khodaiyan, and S. Hadi Razavi, Int. J. Biol. Macromol., 154, 1366 (2020).

    Article  PubMed  CAS  Google Scholar 

  19. J. Huang, Y. Cheng, Y. Wu, X. Shi, Y. Du, and H. Deng, Int. J. Biol. Macromol., 139, 191 (2019).

    Article  PubMed  CAS  Google Scholar 

  20. S. Wu, Y. Yan, D. Ni, X. Pan, X. Chen, J. Guan, X. Xiong, and L. Liu, Colloids Surfaces B Biointerfaces, 183, 110408 (2019).

    Article  PubMed  CAS  Google Scholar 

  21. G. Di Pasquale, L. Ostedgaard, D. Vermeer, W. D. Swaim, P. Karp, and J. A. Chiorini, Gene Ther., 19, 576 (2012).

    Article  PubMed  CAS  Google Scholar 

  22. M. Shin, J. H. Ryu, J. P. Park, K. Kim, J. W. Yang, and H. Lee, Adv. Funct. Mater, 25, 1270 (2015).

    Article  CAS  Google Scholar 

  23. H. Shagholani and S. M. Ghoreishi, J. Drug Deliv. Sci. Technol., 39, 88 (2017).

    Article  CAS  Google Scholar 

  24. X. Yang, P. Huang, H. Wang, S. Cai, Y. Liao, Z. Mo, X. Xu, C. Ding, C. Zhao, and J. Li, Colloids Surfaces B Biointerfaces, 160, 136 (2017).

    Article  PubMed  CAS  Google Scholar 

  25. G. Palma, Water Res., 37, 4974 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. J. Beltrán-Heredia, J. Sánchez-Martín, and C. Martín-Sánchez, Ind. Eng. Chem. Res., 50, 686 (2011).

    Article  Google Scholar 

  27. Y. Wang, S. Chen, S. Zhao, Q. Chen, and J. Zhang, J. Mater. Chem. A., 8, 15845 (2020).

    Article  CAS  Google Scholar 

  28. Y. Huang, Q. Lin, Y. Yu, and W. Yu, Appl. Surf. Sci., 510, 145436 (2020).

    Article  CAS  Google Scholar 

  29. C. Xie and H. Li, Luminescence, 25, 350 (2010).

    Article  PubMed  CAS  Google Scholar 

  30. N. Sahiner, S. Sagbas, and N. Aktas, Mater. Sci. Eng. C., 49, 824 (2015).

    Article  CAS  Google Scholar 

  31. Y.-N. Chen, C. Jiao, Y. Zhao, J. Zhang, and H. Wang, ACS Omega., 3, 11788 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. T. Li, Y. Xiao, D. Guo, L. Shen, R. Li, Y. Jiao, Y. Xu, and H. Lin, J. Colloid Interface Sci., 572, 114 (2020).

    Article  PubMed  CAS  Google Scholar 

  33. W. Yang, A. Sousa, A. Thomas-Gahring, X. Fan, T. Jin, X. Li, P. Tomasula, and L. Liu, Materials (Basel), 9, 757 (2016).

    Article  PubMed Central  Google Scholar 

  34. M. Allais, D. Mailley, P. Hébraud, D. Ihiawakrim, V. Ball, F. Meyer, A. Hébraud, and G. Schlatter, Nanoscale, 10, 9164 (2018).

    Article  PubMed  CAS  Google Scholar 

  35. A. Pizzi, Biomolecules, 9, 344 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  36. H. Rodríguez-Tobías, G. Morales, and D. Grande, Mater. Sci. Eng. C, 101, 306 (2019).

    Article  Google Scholar 

  37. C. Drosou, M. Krokida, and C. G. Biliaderis, Food Hydrocoll., 77, 726 (2018).

    Article  CAS  Google Scholar 

  38. A. D. Juncos Bombin, N. J. Dunne, and H. O. McCarthy, Mater. Sci. Eng. C, 114, 110994 (2020).

    Article  CAS  Google Scholar 

  39. C. Zhang, F. Feng, and H. Zhang, Trends Food Sci. Technol., 80, 175 (2018).

    Article  CAS  Google Scholar 

  40. W. S. Khan, R. Asmatulu, M. Ceylan, and A. Jabbarnia, Fiber Polym., 14, 1235 (2013).

    Article  CAS  Google Scholar 

  41. C. Bavatharani, E. Muthusankar, S. M. Wabaidur, Z. A. Alothman, K. M. Alsheetan, M. mana AL-Anazy, and D. Ragupathy, Synth. Met., 271, 116609 (2021).

    Article  CAS  Google Scholar 

  42. J. V. Aranda and R. Thomas, Semin. Perinatol., 30, 114 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. M. Asgarpour Khansary, G. Walker, and S. Shirazian, Int. J. Pharm., 591, 119992 (2020).

    Article  PubMed  CAS  Google Scholar 

  44. M. Amirinejad, J. Davoodi, M. R. Abbaspour, A. Akhgari, F. Hadizadeh, and A. Badiee, J. Drug Deliv. Sci. Technol., 60, 101951 (2020).

    Article  CAS  Google Scholar 

  45. F. Mohammadi, N. Golafshan, M. Kharaziha, and A. Ashrafi, Int. J. Biol. Macromol., 127, 159 (2019).

    Article  PubMed  CAS  Google Scholar 

  46. N. Sahiner, S. Sagbas, M. Sahiner, and C. Silan, Mater. Sci. Eng. C, 70, 317 (2017).

    Article  CAS  Google Scholar 

  47. T. Wahyono, D. A. Astuti, I. K. Gede Wiryawan, I. Sugoro, and A. Jayanegara, IOP Conf. Ser. Mater. Sci. Eng., 546, 042045 (2019).

    Article  CAS  Google Scholar 

  48. S. Chopra and D. Kumar, Heliyon, 6, e04087 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. N. Dastmalchi, B. Baradaran, S. Latifi-Navid, R. Safaralizadeh, S. M. B. Khojasteh, M. Amini, E. Roshani, and P. Lotfinejad, Life Sci., 258, 118186 (2020).

    Article  PubMed  CAS  Google Scholar 

  50. N. Sahiner, S. Sagbas, M. Sahiner, and S. Demirci, Polym. Degrad. Stab., 133, 152 (2016).

    Article  CAS  Google Scholar 

  51. M. Fiol, A. Weckmüller, S. Neugart, M. Schreiner, S. Rohn, A. Krumbein, and L. W. Kroh, Food Chem., 138, 857 (2013).

    Article  PubMed  CAS  Google Scholar 

  52. Y. Li, D. Ma, D. Sun, C. Wang, J. Zhang, Y. Xie, and T. Guo, Crop J., 3, 328 (2015).

    Article  Google Scholar 

  53. B. Kaczmarek, Materials (Basel), 13, 3224 (2020).

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurettin Sahiner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahiner, M., Kurt, S.B. & Sahiner, N. Biodiverse Properties of Tannic Acid-Based Fibers. Fibers Polym 22, 2986–2994 (2021). https://doi.org/10.1007/s12221-021-1459-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-1459-y

Keywords

Navigation