Skip to main content
Log in

Palm Fibers Residues from Agro-industries as Reinforcement in Biopolymer Filaments for 3D-printed Scaffolds

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a biodegradable, biocompatible, and non-toxic biopolymer. The biopolymer properties can be improved using cellulosic-based materials, often derived from agro-industrial residues, and promoting reuse/re-significance of a by-product for bone tissue engineering applications. Biocomposites of PHBV filled with bleached fibers of palm residues (BFPR) (0–10 % wt/wt) for 3D-printing were prepared. The scaffolds were obtained by additive manufacturing (fused deposition modeling (FDM)). The samples were characterized by stereomicroscopy, SEM, TGA, nanohardness, wettability, FTIR, and biocompatibility. Biocomposites filaments revealed homogeneous diameters, suitable for FDM. Composite filaments had thermal stability at 100–250 °C (processing did not degrade the material). The -OH groups of cellulose (enhanced by bleaching treatment) BFPR added to PHBV had advantages: optimal cell viability, wettability improvement, and slight nanohardness increase. PHBV/BFPR1 % scaffolds had an interconnected porous structure with a pore size of ~900 µm and 60 % filling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Meng, J. Zhao, Y. Yin, J. Luo, L. Zhao, W. Jiang, and J. Feng, Fiber. Polym., 21, 709 (2020).

    Article  CAS  Google Scholar 

  2. E. L. Cyphert, M. Bil, H. A. von Recum, and W. Święszkowski, J. Biomed. Mater. Res. — Part A, 108, 1144 (2020).

    Article  CAS  Google Scholar 

  3. S. Radhakrishnan, S. Nagarajan, M. Bechelany, and S. N. Kalkura in “Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature” (O. Frank-Kamenetskaya, D. Vlasov, E. Panova, and S. Lessovaia Eds.), pp.3–19, Springer, Cham, 2020.

  4. V. K. Balla, K. H. Kate, J. Satyavolu, P. Singh, and J. G. D. Tadimeti, Compos. Part B Eng., 174, 106956 (2019).

    Article  CAS  Google Scholar 

  5. G. Choi and S. Kim, Fiber. Polym., 17, 977 (2016).

    Article  CAS  Google Scholar 

  6. S. Xia, Z. Song, P. Jeyakumar, S. M. Shaheen, J. Rinklebe, Y. S. Ok, N. Bolan, and H. Wang, Crit. Rev. Environ. Sci. Technol., 49, 1027 (2019).

    Article  CAS  Google Scholar 

  7. A. I. Aghmiuni, M. S. Baei, S. H. Keshel, and A. A. Khiyavi, Fiber. Polym., 21, 33 (2020).

    Article  CAS  Google Scholar 

  8. G. R. de Almeida Neto, M. V. Barcelos, M. E. A. Ribeiro, M. M. Folly, and R. J. S. Rodriguez, Mater. Sci. Eng. C, 104, 110004 (2019).

    Article  Google Scholar 

  9. T. L. de A. Montanheiro, F. H. Cristóvan, J. P. B. Machado, D. B. Tada, N. Durán, and A. P. Lemes, J. Mater. Res., 30, 55 (2014).

    Article  Google Scholar 

  10. M. L. Tebaldi, A. L. C. Maia, F. Poletto, F. V. de Andrade, and D. C. F. Soares, J. Drug Deliv. Sci. Technol., 51, 115 (2019).

    Article  CAS  Google Scholar 

  11. S. H. Diermann, M. Lu, G. Edwards, M. Dargusch, and H. Huang, J. Biomed. Mater. Res. — Part A, 107, 154 (2019).

    Article  CAS  Google Scholar 

  12. A. Anžlovar, A. Kržan, and E. Žagar, Arab. J. Chem., 11, 343 (2018).

    Article  Google Scholar 

  13. L. J. Vandi, C. M. Chan, A. Werker, D. Richardson, B. Laycock, and S. Pratt, Polym. Degrad. Stab., doi: https://doi.org/10.1016/j.polymdegradstab.2018.10.015 (2019).

  14. E. Diabor, P. Funkenbusch, and E. E. Kaufmann, Fiber. Polym., 20, 217 (2019).

    Article  CAS  Google Scholar 

  15. L. N. Ludueña, A. Vecchio, P. M. Stefani, and V. A. Alvarez, Fiber. Polym., 14, 1118 (2013).

    Article  Google Scholar 

  16. C. C. Hernandez, F. F. Ferreira, and D. S. Rosa, Carbohydr. Polym., 193, 39 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. R. J. Hickey and A. E. Pelling, Front. Bioeng. Biotechnol., doi: https://doi.org/10.3389/fbioe.2019.00045 (2019).

  18. X. Zhang, C. Wang, M. Liao, L. Dai, Y. Tang, H. Zhang, P. Coates, F. Sefat, L. Zheng, and J. Song, Carbohydr. Polym., 213, 27 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. N. O’Donnell, I. A. Okkelman, P. Timashev, T. I. Gromovykh, D. B. Papkovsky, and R. I. Dmitriev, Acta Biomater., 80, 85 (2018).

    Article  PubMed  Google Scholar 

  20. B. Pei, W. Wang, Y. Fan, X. Wang, F. Watari, and X. Li, Regen. Biomater., 4, 257 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. N. T. Lam, R. Chollakup, W. Smitthipong, T. Nimchua, and P. Sukyai, Ind. Crops Prod., 100, 183 (2017).

    Article  CAS  Google Scholar 

  22. S. Ventura-Cruz, N. Flores-Alamo, and A. Tecante, Int. J. Biol. Macromol., 155, 324 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. I. Gulati, J. Park, S. Maken, and M. G. Lee, Fiber. Polym., 15, 680 (2014).

    Article  CAS  Google Scholar 

  24. D. C. Marin, A. Vecchio, L. N. Ludueña, D. Fasce, V. A. Alvarez, and P. M. Stefani, Fiber. Polym., 16, 285 (2015).

    Article  CAS  Google Scholar 

  25. W. A. Paixão, L. S. Martins, N. C. Zanini, and D. R. Mulinari, J. Inorg. Organomet. Polym. Mater., 30, 2591 (2019).

    Article  Google Scholar 

  26. I. R. Dantas, N. C. Zanini, J. P. Cipriano, M. R. Capri, and D. R. Mulinari in “Advances in Natural Fibre Composites” (R. Fangueiro and S. Rana Eds.), pp.51–59, Springer, Cham, 2018.

  27. J. Guedes, W. M. Florentino, and D. R. Mulinari, “Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems”, pp.55–73, Elsevier Inc., Amsterdam, 2016.

    Book  Google Scholar 

  28. L. D. E. Araujo, N. G. Pimenta, M. F. Bergmann, A. V. Pinto, R. Battisti, and E. C. Leopoldino, Rev. Técnico Científica do IFSC, 2.9, 11 (2020).

    Google Scholar 

  29. R. D. S. Zenni, C. V. Helm, and L. B. B. Tavares, Rev. Gestão Sustentabilidade Ambient., 7, 276 (2018).

    Article  Google Scholar 

  30. V. Narayanamurthy, F. Samsuri, A. Y. F. Khan, H. A. Hamzah, M. B. Baharom, T. Kumary, A. Kumar, and D. K. Raj, Bioinspiration Biomimetics, 15, 016002 (2019).

    Article  PubMed  Google Scholar 

  31. P. Slepička, J. Siegel, O. Lyutakov, N. S. Kasálková, Z. Kolská, L. Bačáková, and V. Švorčík, Biotechnol. Adv., 36, 839 (2018).

    Article  PubMed  Google Scholar 

  32. M. Gandara, D. R. Mulinari, F. M. Monticeli, M. R. Capri, D. R. Mulinari, and F. M. Monticeli, J. Nat. Fibers, https://doi.org/10.1080/15440478.2019.1710653 (2020).

  33. G. Basu, L. Mishra, and A. K. Samanta, J. Nat. Fibers, 16, 442 (2019).

    Article  CAS  Google Scholar 

  34. A. S. Fonseca, S. Panthapulakkal, S. K. Konar, M. Sain, L. Bufalino, J. Raabe, I. P. A. Miranda, M. A. Martins, and G. H. D. Tonoli, Ind. Crops Prod., 131, 203 (2019).

    Article  CAS  Google Scholar 

  35. L. Hilliou, P. F. Teixeira, D. Machado, J. A. Covas, C. S. S. Oliveira, A. F. Duque, and M. A. M. Reis, Polym. Degrad. Stab., 128, 269 (2016).

    Article  CAS  Google Scholar 

  36. S. I. Atsani and H. Mastrisiswadi, IOP Conf. Ser. Mater. Sci. Eng., 722, 012022 (2020).

    Article  Google Scholar 

  37. Z. Hu, Q. Shao, Y. Huang, L. Yu, D. Zhang, X. Xu, J. Lin, H. Liu, and Z. Guo, Nanotechnology, 29, 185602 (2018).

    Article  PubMed  Google Scholar 

  38. M. Kathirselvam, A. Kumaravel, V. P. Arthanarieswaran, and S. S. Saravanakumar, Carbohydr. Polym., 217, 178 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. O. A. Adeyeye, E. R. Sadiku, A. B. Reddy, A. S. Ndamase, G. Makgatho, P. S. Sellamuthu, A. B. Perumal, R. B. Nambiar, V. O. Fasiku, and I. D. Ibrahim in “Green Biopolymers and Their Nanocomposites” (D. Gnanasekaran Eds.), pp.221–231, Springer, Singapore, 2019.

  40. A. Hassan, M. R. M. Isa, and Z. A. M. Ishak, BioResources, 14, 3101 (2019).

    Article  Google Scholar 

  41. T. Zheng, Z. Zhang, S. Shukla, S. Agnihotri, C. M. Clemons, and S. Pilla, Carbohydr. Polym., 205, 27 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. K. Yorseng, N. Rajini, S. Siengchin, N. Ayrilmis, and V. Rajulu, Process Saf. Environ. Prot., 124, 187 (2019).

    Article  Google Scholar 

  43. M. J. Halimatul, S. M. Sapuan, M. Jawaid, M. R. Ishak, and R. A. Ilyas, Polimery/Polymers, 64, 596 (2019).

    Google Scholar 

  44. S. M. Izwan, S. M. Sapuan, M. Y. M. Zuhri, and A. R. Mohamed, J. Mater. Res. Technol., 9, 5805 (2020).

    Article  Google Scholar 

  45. N. Thakor, U. Trivedi, and K. C. Patel, Bioresour. Technol., 96, 1843 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. W. Frącz and G. Janowski, Mechanika, 90, 441 (2018).

    Google Scholar 

  47. A. B. Pillai, A. J. Kumar, and H. Kumarapillai, 3 Biotech, doi: https://doi.org/10.1007/s13205-019-2017-9 (2020).

  48. N. Israni, P. Venkatachalam, B. Gajaraj, K. N. Varalakshmi, and S. Shivakumar, J. Environ. Manage., 255, 109884 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. M. L. Latour, M. Tarar, R. J. Hickey, C. M. Cuerrier, I. Catelas, A. E. Pelling, and G. Hall, bioRxiv, https://doi.org/10.1101/2020.01.15.906677 (2020).

  50. S. Gorgieva, L. Girandon, and V. Kokol, Mater. Sci. Eng. C, 73, 478 (2017).

    Article  CAS  Google Scholar 

  51. G. Mutlu, S. Calamak, K. Ulubayram, and E. Guven, J. Drug Deliv. Sci. Technol., 43, 185 (2018).

    Article  CAS  Google Scholar 

  52. N. F. Braga, D. A. Vital, L. M. Guerrini, A. P. Lemes, D. M. D. Formaggio, D. B. Tada, T. M. Arantes, and F. H. Cristovan, Biopolymers, doi: https://doi.org/10.1002/bip.23120 (2018).

  53. J. Wangler and R. Kohlus, Chem. Eng. Technol., 40, 1552 (2017).

    Article  CAS  Google Scholar 

  54. T. L. de A. Montanheiro, L. S. Montagna, V. Patrulea, O. Jordan, G. Borchard, R. G. Ribas, T. M. B. Campos, G. P. Thim, and A. P. Lemes, Polym. Test., 79, 106079 (2019).

    Article  CAS  Google Scholar 

  55. K. Nisogi, O. Satoshi, S. Kobayashi, K. Kuroda, and T. Okamoto, Mater. Sci. Forum, 985, 64 (2020).

    Article  Google Scholar 

  56. M. Kouhi, M. Fathi, M. P. Prabhakaran, M. Shamanian, and S. Ramakrishna, Appl. Surf. Sci., 457, 616 (2018).

    Article  CAS  Google Scholar 

  57. R. S. Ambekar and B. Kandasubramanian, Ind. Eng. Chem. Res., 58, 6163 (2019).

    Article  CAS  Google Scholar 

  58. H. Tohidlou, S. S. Shafiei, S. Abbasi, M. Asadi-Eydivand, and M. Fathi-Roudsari, Fiber. Polym., 20, 1869 (2019).

    Article  CAS  Google Scholar 

  59. A. P. M Madrid, S. M. Vrech, M. A. Sanchez, and A. P. Rodriguez, Mater. Sci. Eng. C, 100, 631 (2019).

    Article  Google Scholar 

  60. S. Saska, L. C. Pires, M. A. Cominotte, L. S. Mendes, M. F. de Oliveira, I. A. Maia, J. V. L. da Silva, S. J. L. Ribeiro, and J. A. Cirelli, Mater. Sci. Eng. C, 89, 265 (2018).

    Article  CAS  Google Scholar 

  61. S. Mondal and U. Pal, J. Drug Deliv. Sci. Technol., 53, 101131 (2019).

    Article  CAS  Google Scholar 

  62. M. Pilia, T. Guda, and M. Appleford, Biomed Res. Int., doi: https://doi.org/10.1155/2013/458253 (2013).

  63. M. Hassan, K. Dave, R. Chandrawati, F. Dehghani, and V. G. Gomes, Eur. Polym. J., 121, 109340 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the research support by FAPERJ (Process 260.026/2018) and the company Biosolvit for the donation of royal palm fibers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hernane Barud or Daniella Mulinari.

Electronic Supplementary Material (ESM)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanini, N., Carneiro, E., Menezes, L. et al. Palm Fibers Residues from Agro-industries as Reinforcement in Biopolymer Filaments for 3D-printed Scaffolds. Fibers Polym 22, 2689–2699 (2021). https://doi.org/10.1007/s12221-021-0936-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0936-7

Keywords

Navigation