Skip to main content
Log in

Improvement of Interfacial Bonding Force between PMI Foam and CFRP in PMI Foam-Cored CFRP Sandwich Composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In the polymethacrylimide (PMI) foam-cored carbon fiber reinforced polymer (CFRP) sandwich composite, PMI foam is the core material and CFRP is the surface material. The interfacial bonding force between the foam core and the skin layer is an important factor that determines the mechanical properties of the foam-cored sandwich composite. This study improved the interfacial bonding force between the PMI foam core and the CFRP skin layer in the PMI foam-cored sandwich CFRP composite. This was achieved by fabricating holes of a constant volume on the surface of the PMI foam; in addition, an epoxy, the matrix of CFRP, was filled to increase the bonding area of the interface between the PMI foam and the CFRP skin layer. Then by processing holes with constant distance, it was confirmed that the interfacial bonding force according to the intervals of the holes. As a result, the interfacial bonding force of samples with holes increased on average up to 63.5 % compared with the samples without the processed holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Qu, D. Ju, S. Gao, and J. Chen, Compos. Struct., 204, 22 (2018).

    Article  Google Scholar 

  2. M. John, R. Schlimper, M. Rinker, T. Wagner, A. Roth, and R. Schäuble, CEAS Aeronaut. J., 2, 213 (2011).

    Article  Google Scholar 

  3. L. Wu, J. Ban, Q. Jiang, T. T. Li, B. C. Shiu, S. Y. Huang, and J. H. Lin, Fiber. Polym., 20, 1277 (2019).

    Article  CAS  Google Scholar 

  4. V. Rizov, A. Shipsha, and D. Zenkert, Compos. Struct., 69, 95 (2005).

    Article  Google Scholar 

  5. C. Audibert, A. S. Andreani, E. Laine, and J. C. Grandidier, Compos. Struct., 207, 108 (2019).

    Article  Google Scholar 

  6. M. S. Kirugulige, R. Kitey, and H. V. Tippur, Compos. Sci. Technol., 65, 1052 (2005).

    Article  Google Scholar 

  7. Z. Zhang, M. Xu, and B. Li, Polym. Adv. Technol., 29, 2982 (2018).

    Article  CAS  Google Scholar 

  8. D. Nguyen, M. S. B. Abdullah, R. Khawarizmi, D. Kim, and P. Kwon, Wear, 450, 203213 (2020).

    Article  Google Scholar 

  9. G. Bragagnolo, A. D. Crocombe, S. L. Ogin, I. Mohagheghian, A. Sordon, G. Meeks, and C. Santoni, Mater. Des., 186, 108312 (2020).

    Article  CAS  Google Scholar 

  10. W. J. Cantwell and P. Davies, Appl. Compos. Mater., 3, 407 (1996).

    Article  CAS  Google Scholar 

  11. M. Akay and R. Hanna, Composites, 21, 325 (1990).

    Article  Google Scholar 

  12. B. Du, L. Chen, J. Tan, H. Zhou, Y. Zhao, W. Wu, and L. Chen, Int. J. Mech. Sci., 149, 101 (2018).

    Article  Google Scholar 

  13. M. C. Saha, E. Kabir, and S. Jeelani, Mater. Lett., 62, 567 (2008).

    Article  CAS  Google Scholar 

  14. Q. Wu, L. Ma, L. Wu, and J. Xiong, Compos. Mater., 153, 585 (2016).

    Google Scholar 

  15. ROHACELL, https://www.rohacell.com/product/peek-industrial/downloads/rohacell%20ig-f_2020_january.pdf (Accessed July 1, 2020).

  16. SK Chemical, https://www.skchemicals.com/download/TDS/SKYFLEX/SKYFLEX_MSG_ver2.0.pdf (Accessed July 1, 2020).

  17. J. C. Lee, W. Y. Jeong, K. Y. Kim, and Y. L. Dae, Korea Patent, 10-2019-0064061 (2019).

  18. H. Wang, X. Hao, K. Yan, H. Zhou, and L. Hua, J. Mater. Process. Technol., 257, 213 (2018).

    Article  CAS  Google Scholar 

  19. J. Yuan, X. Chen, W. Zhou, and Y. Li, Compos. Part B-Eng., 79, 301 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowldgements

This work was supported by the Civil-Military Technology Cooperation Program (Project number 17-CM-MA-24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Chul Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheon, S., Yu, S., Kim, KY. et al. Improvement of Interfacial Bonding Force between PMI Foam and CFRP in PMI Foam-Cored CFRP Sandwich Composites. Fibers Polym 22, 2281–2284 (2021). https://doi.org/10.1007/s12221-021-0792-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0792-5

Keywords

Navigation