Skip to main content
Log in

Significance of Carbon Fiber Orientation on Thermomechanical Properties of Carbon Fiber Reinforced Epoxy Composite

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The orientation of carbon fiber and its functional groups plays a crucial role in determining the thermomechanical properties of carbon fiber reinforced polymer (CFRP) composites. In this study, flat as well as curved CFRP with unidirectional (UD-CFRP), bidirectional (2D-CFRP), and combination of unidirectional and bidirectional (UD+2D)-CFRP were fabricated using filament winding technique to see the effect of carbon fiber orientation on the mechanical and thermomechanical properties. Three-point bending test shows that flat and curved UD-CFRP having all carbon fiber aligned in one direction exhibit superior mechanical as well as thermal properties. In flat UD-CFRP, improvement of 28 %, 73.6 %, and 14.3 % in flexural strength, modulus and ILSS as compared to flat 2D-CFRP composite was observed. Optical microscopy and scanning electron microscopy (SEM) showed the delamination and fractured surface of CFRP. The maximum mechanical properties, glass transition temperature (Tg), coefficient of thermal expansion (CTE), and fiber-matrix interaction in UD-CFRP was explained by the degree of curing calculation using dynamic mechanical analysis (DMA). Raman spectroscopy was used to examine the defect difference created in CFRP composite with different orientation of carbon fiber, and the mechanism of fiber-matrix interaction was proposed. The improved thermal properties of CFRP composites were associated alignment of functional groups present on carbon fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Pathak, M. Borah, A. Gupta, T. Yokozeki, and S. R. Dhakate, Compos. Sci. Technol., 135, 28 (2016).

    Article  CAS  Google Scholar 

  2. S. Dhakate, A. Chaudhary, A. Gupta, A. Pathak, B. Singh, K. Subhedar, and T. Yokozeki, RSC Adv., 6, 36715 (2016).

    Article  CAS  Google Scholar 

  3. A. K. Pathak, H. Garg, M. Singh, T. Yokozeki, and S. R. Dhakate, J. Polym. Res., 26, 23 (2019).

    Article  Google Scholar 

  4. S. Dhakate and O. Bahl, Carbon, 41, 1193 (2003).

    Article  CAS  Google Scholar 

  5. A. K. Tanwer, Int. J. Res. Advent Technol., 2, 34 (2014).

    Google Scholar 

  6. X. Zhang, X. Fan, C. Yan, H. Li, Y. Zhu, X. Li, and L. Yu, ACS Appl. Mater. Interfaces, 4, 1543 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. F. M. Al-Oqla and S. Sapuan, J. Clean. Prod., 66, 347 (2014).

    Article  CAS  Google Scholar 

  8. D. A. Hensher, “Fiber-reinforced-plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications”, Elsevier, 2016.

  9. C. Soutis, Mater. Sci. Eng.: A, 412, 171 (2005).

    Article  Google Scholar 

  10. D. Z. Tang, Appl. Mech. Mater., 443, 613 (2014).

    Article  CAS  Google Scholar 

  11. A. F. Smith, “Archery Bow with Reinforced Limbs”, Google Patents, 1997.

  12. D. Lieu, J. Kim, and K. C. Kim, Korea National Sport University, 2008.

  13. S. Maidin and M. Jaafar, Appl. Mech. Mater., 786, 300 (2015).

    Article  Google Scholar 

  14. T. Semoto, Y. Tsuji, H. Tanaka, and K. Yoshizawa, J. Phys. Chem. C, 117, 24830 (2013).

    Article  CAS  Google Scholar 

  15. L. Harper, T. Turner, J. Martin, and N. Warrior, J. Compos. Mater., 43, 57 (2009).

    Article  Google Scholar 

  16. G. Agarwal, A. Patnaik, and R. Sharma, J. Eng. Sci. Technol., 9, 590 (2014).

    Google Scholar 

  17. Y. Sanomura and M. Kawamura, Polym. Compos., 24, 587 (2003).

    Article  CAS  Google Scholar 

  18. S. K. Lee, M. W. Kim, C. J. Park, M. J. Chol, G. Kim, J.-M. Cho, and C.-H. Choi, Int. J. Mech. Sci., 117, 162 (2016).

    Article  Google Scholar 

  19. H. Rahmani, S. Najafi, S. Saffarzadeh-Matin, and A. Ashori, Polym. Eng. Sci., 54, 2676 (2014).

    Article  CAS  Google Scholar 

  20. A. Selmi, 2nd International Conference on Emerging Trends in Engineering and Technology (ICETET), 179, 2014.

  21. M. Andideh and M. Esfandeh, Carbon, 123, 233 (2017).

    Article  CAS  Google Scholar 

  22. B. Gao, J. Zhang, Z. Hao, L. Huo, R. Zhang, and L. Shao, Carbon, 123, 548 (2017).

    Article  CAS  Google Scholar 

  23. D. Varma, S. Saxena, N. Gupta, and I. Varma, Indian J. Eng. Mater. Sci., 4, 266 (1997).

    CAS  Google Scholar 

  24. T. Brocks, M. O. H. Cioffi, and H. J. C. Voorwald, Appl. Surface Sci., 274, 210 (2013).

    Article  CAS  Google Scholar 

  25. F. Zhao, Y. Huang, L. Liu, Y. Bai, and L. Xu, Carbon, 49, 2624 (2011).

    Article  CAS  Google Scholar 

  26. J. L. Figueiredo, C. A. Bernardo, R. Baker, and K. Hüttinger, “Carbon Fibers Filaments and Composites”, Springer Science & Business Media, 2013.

  27. D.-F. Li, H.-J. Wang, F. He, and X.-K. Wang, Carbon, 45, 1379 (2007).

    Article  Google Scholar 

  28. J. Moosburger-Will, J. Jäger, J. Strauch, M. Bauer, S. Strobl, F. F. Linscheid, and S. Horn, Compos. Interfaces, 24, 691 (2017).

    Article  CAS  Google Scholar 

  29. B. S. Hayes and L. M. Gammon, “Optical Microscopy of Fiber-reinforced Composites”, ASM International, 2010.

  30. E. Sideridis and G. Papadopoulos, J. Appl. Polym. Sci., 93, 63 (2004).

    Article  CAS  Google Scholar 

  31. W. K. Goertzen and M. R. Kessler, Compos. Part B: Eng., 38, 779 (2007).

    Article  Google Scholar 

  32. S. Dong and R. Gauvin, Polym. Compos., 14, 414 (1993).

    Article  CAS  Google Scholar 

  33. Y.-K. Choi, K.-I. Sugimoto, S.-M. Song, Y. Gotoh, Y. Ohkoshi, and M. Endo, Carbon, 43, 2199 (2005).

    Article  CAS  Google Scholar 

  34. L. A. Pothan, S. Thomas, and G. Groeninckx, Compos. Part A: Appl. Sci. Manuf., 37, 1260 (2006).

    Article  Google Scholar 

  35. S. Sharma, A. K. Pathak, V. N. Singh, S. Teotia, S. Dhakate, and B. Singh, Carbon, 137, 104 (2018).

    Article  CAS  Google Scholar 

  36. C. E. Corcione and M. Frigione, Materials, 5, 2960 (2012).

    Article  CAS  PubMed Central  Google Scholar 

  37. A. Tezvergil, L. V. Lassila, and P. K. Vallittu, Dental Materials, 19, 471 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. K. F. Babu and W. M. Choi, Compos. Sci. Technol., 122, 82 (2016).

    Article  CAS  Google Scholar 

  39. L. G. Tang and J. L. Kardos, Polym. Compos., 18, 100 (1997).

    Article  CAS  Google Scholar 

  40. C. Schick, D. Lexa, and L. Leibowitz, “Characterization of Materials”, doi: https://doi.org/10.1002/0471266965.com030.pub2 (2002).

  41. M. Cassettari, F. Papucci, G. Salvetti, E. Tombari, S. Veronesi, and G. Johari, Rev. Sci. Instrum., 64, 1076 (1993).

    Article  CAS  Google Scholar 

  42. H. J. Zo, S. H. Joo, T. Kim, P. S. Seo, J. H. Kim, and J. S. Park, Fiber. Polym., 15, 1071 (2014).

    Article  CAS  Google Scholar 

  43. Z. Zhou, M. Yu, R. Bai, A. Li, J. Sun, and M. Ren, Polym. Polym. Compos., 22, 45 (2014).

    CAS  Google Scholar 

  44. H. Vašková and V. Křesálek, “13th WSEAS International Conference on Automation Control, Modeling & Simulation (ACMOS’11)”, Lanzarote, Canary Islands, Spain, 2011.

  45. R. Hardis, J. L. Jessop, F. E. Peters, and M. R. Kessler, Compos. Part A: Appl. Sci. Manuf., 49, 100 (2013).

    Article  CAS  Google Scholar 

  46. T. Livneh, T. L. Haslett, and M. Moskovits, Phys. Rev. B, 66, 195110 (2002).

    Article  Google Scholar 

  47. M. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. Cancado, A. Jorio, and R. Saito, Phys. Chem. Chem. Phys., 9, 1276 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. F. Tuinstra and J. Koenig, J. Compos. Mater., 4, 492 (1970).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Authors are highly grateful to Director, CSIR-NPL, and Head, Advanced Materials and Devices Division, for his kind permission to publish the results. Authors like to thank, R. K. Seth, for providing TGA, DSC and TMA and Jai Tawale for providing SEM characterized composites. One of the authors, Abhishek K. Pathak, would like to thank, University grant Commission JRF fellowship (UGC-JRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek K. Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, A.K., Garg, H., Subhedar, K.M. et al. Significance of Carbon Fiber Orientation on Thermomechanical Properties of Carbon Fiber Reinforced Epoxy Composite. Fibers Polym 22, 1923–1933 (2021). https://doi.org/10.1007/s12221-021-0703-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0703-9

Keywords

Navigation