Skip to main content
Log in

A Study on the Aging Resistance of Injection-molded Glass Fiber Thermoplastic Composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this paper, the aging resistance of glass fiber-reinforced thermoplastic composites was discussed and analyzed in terms of the effects of hygrothermal aging and the time-temperature dependence. Accelerated hygrothermal aging tests, static flexural tests at different temperatures and speeds, and dynamic mechanical analysis tests at multiple temperatures and frequencies were carried out. Hygrothermal aging reduces the tensile properties and heat resistance of GF/PA and GF/PET, although the influence on GF/PA was greater than that on GF/PET. However, hygrothermal aging does not affect the thermal decomposition temperature. For the GF/PET composites, both the static flexural and dynamic mechanical properties were time and temperature dependent. It was found that increasing the temperature and decreasing the loading rate had equivalent effects on reducing the flexural strength and modulus. The time-temperature superposition principle was applied to the static flexural modulus of GF/PET. According to the master curve obtained by the time-temperature superposition principle, it was predicted that the static flexural modulus of GF/PET composites will decrease by 69.4% over 10 years at the reference temperature of 30 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Xin, Y. Liu, A. Mosallam, Y. Zhang, and C. Wang, Constr. Build. Mater., 127, 237 (2016).

    Article  Google Scholar 

  2. G. Hota, W. Barker, and A. Manalo, Constr. Build. Mater., 256, 119462 (2020).

    Article  CAS  Google Scholar 

  3. Y. Zhou, W. He, Y. Wu, D. Xu, X. Chen, M. He, and J. Guo, J. Fire. Sci., 37, 176 (2019).

    Article  CAS  Google Scholar 

  4. L. Calabrese, V. Fiore, T. Scalici, and A. Valenza, J. Appl. Polym. Sci., 136, 47203 (2018).

    Article  Google Scholar 

  5. R. Kattaguri, A. O. Fulmali, R. K. Prusty, and B. C. Ray, J. Appl. Polym. Sci., 136, 48434 (2019).

    Google Scholar 

  6. J. Nicholas, M. Mohamed, G. S. Dhaliwal, S. Anandan, and K. Chandrashekhara, Compos. B. Eng., 94, 370 (2016).

    Article  CAS  Google Scholar 

  7. D. J. Kwon, P. S. Shin, J. H. Kim, Y. M. Baek, H. S. Park, K. L. DeVries, and J. M. Park, Compos. B. Eng., 130, 46 (2017).

    Article  CAS  Google Scholar 

  8. J. Guo, M. Wang, L. Li, J. Wang, W. He, and X. Chen, Polym. Compos., 39, 1733 (2018).

    Article  Google Scholar 

  9. C. Rubio-González, E. José-Trujillo, J. A. Rodríguez-González, A. Mornas, and A. Talha, Polym. Compos., 41, 2181 (2020).

    Article  Google Scholar 

  10. J. Wang, Y. He, L. Jin, D. Zhou, and J. Guo, Polym. Eng. Sci., 59, 643 (2019).

    Article  CAS  Google Scholar 

  11. P. Zuo, J. Fitoussi, M. Shirinbayan, F. Bakir, and A. Tcharkhtchi, Polym. Eng. Sci., 59, 765 (2018).

    Article  Google Scholar 

  12. X. Jiang, C. Luo, X. Qiang, Q. Zhang, H. Kolstein, and F. Bijlaard, Polymers-Basel., 10, 845 (2018).

    Article  Google Scholar 

  13. L. Yu, X. Yan, and G. Fortin, J. Polym. Res., 25, 247 (2018).

    Article  Google Scholar 

  14. P. Zuo, A. Tcharkhtchi, M. Shirinbayan, J. Fitoussi, and F. Bakir, J. Polym. Res., 27, 77 (2020).

    Article  CAS  Google Scholar 

  15. D. Zhao, Y. Dong, J. Xu, Y. Yang, K. Fujiwara, E. Suzuki, T. Furukawa, Y. Takai, and H. Hamada, Fiber. Polym., 17, 2131 (2017).

    Article  Google Scholar 

  16. J. Liu, Y. Jia, and J. Wang, Fiber. Polym., 20, 1900 (2019).

    Article  CAS  Google Scholar 

  17. H. B. Mayya, D. Pai, V. M. Kini, and N. H. Padmaraj, J. Inst. Eng. India Ser. C, doi: https://doi.org/10.1007/s40032-021-00676-w (2021).

  18. K. Berketis and D. Tzetzis, J. Mater. Sci., 45, 5611 (2010).

    Article  CAS  Google Scholar 

  19. M. P. Foulc, A. Bergeret, L. Ferry, P. Ienny, and A. Crespy, Polym. Degrad. Stabil., 89, 461 (2005).

    Article  CAS  Google Scholar 

  20. W. He, N. Liu, X. Chen, J. Guo, and T. Wei, RSC Adv., 6, 36689 (2016).

    Article  CAS  Google Scholar 

  21. A. Pegoretti and A. Penati, Polymer, 45, 7995 (2004).

    Article  CAS  Google Scholar 

  22. S. A. Grammatikos, M. Evernden, J. Mitchels, B. Zafari, J. T. Mottram, and G. C. Papanicolaou, Mater. Des., 96, 283 (2016).

    Article  CAS  Google Scholar 

  23. R. Autay, A. Njeh, and F. Dammak, J. Thermoplast. Compos. Mater., 32, 1585 (2018).

    Article  Google Scholar 

  24. A. Maiti, Rheol. Acta., 58, 261 (2019).

    Article  CAS  Google Scholar 

  25. Y. Miyano, M. Nakada, and N. Sekine, Compos. B. Eng., 35, 497 (2004).

    Article  Google Scholar 

  26. J. H. Lee, J. W. Bae, J. S. Kim, T. J. Hwang, S. D. Park, S. H. Park, T. M. Yeo, W. Kim, and N.-J. Jo, Macromol. Res., 19, 555 (2011).

    Article  CAS  Google Scholar 

  27. C. Chang, F. Lam, and J. F. Kadla, Wood. Sci. Technol., 47, 571 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqiu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Hou, Z. & Yang, Y. A Study on the Aging Resistance of Injection-molded Glass Fiber Thermoplastic Composites. Fibers Polym 23, 502–514 (2022). https://doi.org/10.1007/s12221-021-0449-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0449-4

Keywords

Navigation