Skip to main content

Physical, Mechanical and Morphological Properties of Sugar Palm Fiber Reinforced Polylactic Acid Composites

Abstract

This research was performed to evaluate the physical, mechanical and morphological properties of sugar palm fiber (SPF) reinforced polylactic acid (PLA) composites. PLA is a thermoplastic biodegradable polymer which is mostly used as a matrix material in the composite. Sugar palm fiber and PLA were mixed to form composite compounds using twin-screw extruder. These biocomposites of various sugar palm fiber loads (0, 10, 20, 30, and 40 wt. %) were prepared by using compression moulding. The effect of the loading of sugar palm fibers on the physical properties of composites (density, voids, and water absorption analysis), mechanical (tensile, flexural, and impact analysis) and morphology was studied. The determination of water absorption at different fiber loadings showed that the percentage of water absorption increased as the loading of fibers increased. The 30 % SPF loading composite displays optimum values for flexural and tensile strength which are 26.65 MPa and 13.70 MPa, respectively. Morphological studies by scanning electron microscopy revealed homogeneous fiber and matrix distribution also at 30 % loading of SPF with excellent adhesion, which plays an important role in enhancing the mechanical properties of composites. SEM analyzes show strong dispersion of SPF into PLA matrix.

This is a preview of subscription content, access via your institution.

References

  1. K. Oksman, M. Skrifvars, and J. F. Selin, Compos. Sci. Technol., 63, 1317 (2003).

    CAS  Google Scholar 

  2. R. A. Ilyas, S. M. Sapuan, M. L. Sanyang, M. R. Ishak, and E. S. Zainudin, Curr. Anal. Chem., 14, 203 (2018).

    CAS  Google Scholar 

  3. R. A. Ilyas and S. M. Sapuan, Curr. Anal. Chem., 16, 500 (2020).

    CAS  Google Scholar 

  4. R. A. Ilyas and S. M. Sapuan, Curr. Org. Synth., 16, 1068 (2020).

    Google Scholar 

  5. J. Bharanichandar, Natural Fiber Reinforced Polymer Composites for Automobile Accessories, 9, 494 (2014).

    Google Scholar 

  6. A. S. Singhaa and V. K. Thakura, BioResources, 3, 1173 (2008).

    Google Scholar 

  7. M. Chalid and I. Prabowo, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 9, 342 (2015).

    Google Scholar 

  8. A. Atiqah, M. Jawaid, S. M. Sapuan, and M. R. Ishak, BioResources, 13, 1174 (2018).

    CAS  Google Scholar 

  9. R. A. Ilyas, S. M. Sapuan, M. R. Ishak, E. S. Zainudin, and M. S. N. Atikah, Biofibers, Biopolymers, and Biocomposites, 1, 189 (2018).

    Google Scholar 

  10. M. R. M. Huzaifah, S. M. Sapuan, Z. Leman, M. R. Ishak, and M. A. Maleque, Multidiscip. Model. Mater. Struct., 13, 678 (2017).

    Google Scholar 

  11. S. M. Sapuan, R. A. Ilyas, M. R. Ishak, Z. Leman, and M. S. N. Atikah, Biofibers, Biopolymers, and Biocomposites, 1, 245 (2018).

    Google Scholar 

  12. A. M. Radzi, S. M. Sapuan, M. Jawaid, and M. R. Mansor, Fiber. Polym., 20, 847 (2019).

    CAS  Google Scholar 

  13. B. Rashid, Z. Leman, M. Jawaid, M. J. Ghazali, and M. R. Ishak, Cellulose, 23, 2905 (2016).

    CAS  Google Scholar 

  14. H. M. Akil, M. F. Omar, A. M. Mazuki, S. Safiee, and Z. A. M. Ishak, Mater. Des., 32, 8 (2011).

    Google Scholar 

  15. R. A. Ilyas, S. M. Sapuan, M. Atikah, M. Asyraf, S. A. Rafiqah, H. Aisyah, N. M. Nurazzi, and M. Norrrahim, Text. Res. J., 91, 1 (2020).

    Google Scholar 

  16. R. A. Ilyas, S. M. Sapuan, M. R. Ishak, and E. S. Zainudin, Int. J. Biol. Macromol., 123, 379 (2019).

    PubMed  CAS  Google Scholar 

  17. R. A. Ilyas, S. M. Sapuan, and M. R. Ishak, Carbohydr. Polym., 181, 1038 (2018).

    PubMed  CAS  Google Scholar 

  18. R. A. Ilyas, S. M. Sapuan, R. Ibrahim, H. Abral, M. R. Ishak, E. S. Zainudin, M. S. N. Atikah, N. M. Nurazzi, A. Atiqah, and M. N. M Ansari, J. Mater. Res. Technol., 8, 4819 (2019).

    CAS  Google Scholar 

  19. J. Sahari, S. M. Sapuan, E. S. Zainudin, and M. A. Maleque, J. Biobased Mater. Bioenergy, 7, 90 (2013).

    CAS  Google Scholar 

  20. Z. Leman, S. M. Sapuan, A. M. Saifol, M. A. Maleque, and M. M. H. M. Ahmad, Mater. Des., 29, 1666 (2008).

    CAS  Google Scholar 

  21. B. Rashid, Z. Leman, M. Jawaid, M. J. Ghazali, and M. R. Ishak, J. Nat. Fibers, 14, 645 (2017).

    CAS  Google Scholar 

  22. A. Nazrin, S. M. Sapuan, M. Y. M. Zuhri, R. A. Ilyas, R. Syafiq, and S. F. K. Sherwani, Front. Chem., 8, 213 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. F. M. A. Oqla and S. M. Sapuan, “Advanced Processing, Properties, and Applications of Starch and Other Biobased Polymers”, pp.111–138, Elsevier, UK, 2020.

    Google Scholar 

  24. N. A. Ibrahim, W. Md Zin Wan Yunus, M. Othman, K. Abdan, and K. A. Hadithon, J. Reinf. Plast. Compos., 29, 1099 (2010).

    CAS  Google Scholar 

  25. M. S. Huda, L. T. Drzal, M. Misra, and A. K. Mohanty, J. Appl. Polym. Sci., 102, 4856 (2006).

    CAS  Google Scholar 

  26. I. S. M. A. Tawakkal, R. A. Talib, K. Abdan, and C. N. Ling, BioResources, 7, 1643 (2012).

    Google Scholar 

  27. F. Shukor, A. Hassan, M. Hasan, M. S. Islam, and M. Mokhtar, Polym.-Plast. Technol. Eng., 53, 760 (2014).

    CAS  Google Scholar 

  28. X. Zhao, H. Hu, X. Wang, X. Yu, W. Zhou, and S. Peng, RSC Adv., 10, 13316 (2020).

    CAS  Google Scholar 

  29. N. Eselini, S. Tirkes, A. O. Akar, and U. Tayfun, J. Elastomers Plast., 52, 701 (2020).

    CAS  Google Scholar 

  30. ASTM D792-13, Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement, ASTM International, West Conshohocken, PA, 2013.

    Google Scholar 

  31. ASTM D570-14, Standard Test Method for Water Absorption of Plastics, ASTM International, West Conshohocken, PA, 2014.

    Google Scholar 

  32. E. H. Agung and M. H. M. Hamdan, NASPA J., 42, 1 (2005).

    Google Scholar 

  33. ASTM D638-10, Standard Test Method for Tensile Properties of Plastic, ASTM International, West Conshohocken, PA, 2010.

    Google Scholar 

  34. ASTM D790-03, Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, ASTM International, West Conshohocken, PA, 2003.

    Google Scholar 

  35. ASTM Standard D256-15, Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics, ASTM International, West Conshohocken, PA, 2015.

    Google Scholar 

  36. A. Atiqah, M. Jawaid, S. M. Sapuan, and M. R. Ishak, J. Renew. Mater., 6, 477 (2018).

    CAS  Google Scholar 

  37. B. Rashid, Z. Leman, M. Jawaid, M. J. Ghazali, and M. R. Ishak, J. Nat. Fibers, 14, 645 (2017).

    CAS  Google Scholar 

  38. U. D. Idris, V. S. Aigbodion, I. J. Abubakar, and C. I. Nwoye, J. King Saud Univ. — Eng. Sci., 27, 92 (2015).

    Google Scholar 

  39. B. Shivamurthy, K. Murthy, P. C. Joseph, K. Rishi, and K. U. Bhat, J. Mater. Cycles, 17, 56 (2015).

    Google Scholar 

  40. C. M. Ruzaidi, H. Kamarudin, J. B. Shamsul, and M. A. Abdullah, Adv. Mater. Res., 341, 26 (2012).

    Google Scholar 

  41. A. Danladi and J. Shu’aib, Am. J. Mater. Sci., 3, 139 (2014)

    Google Scholar 

  42. M. H. Zamri, H. M. Akil, A. A. Bakar, Z. A. M. Ishak, and L. W. Cheng, J. Compos. Mater., 46, 51 (2012).

    CAS  Google Scholar 

  43. A. Atiqah, M. Jawaid, M. R. Ishak, and S. M. Sapuan, Procedia Eng., 184, 581 (2017).

    CAS  Google Scholar 

  44. S. Ochi, Mech. Mater., 40, 446 (2008).

    Google Scholar 

  45. A. Atiqah, M. Jawaid, S. M. Sapuan, and M. R. Ishak, IOP Conf. Ser. Mater. Sci. Eng., 368, 012047 (2018).

    Google Scholar 

  46. S. Serizawa, K. Inoue, and M. Iji, J. Appl. Polym. Sci., 100, 618 (2006).

    CAS  Google Scholar 

  47. M. Shibata, K. Ozawa, N. Teramoto, R. Yosomiya, and H. Takeishi, Macromol. Mater. Eng., 288, 35 (2003).

    CAS  Google Scholar 

  48. M. S. Huda, L. T. Drzal, A. K. Mohanty, and M. Misra, Compos. Sci. Technol., 68, 424 (2008).

    CAS  Google Scholar 

  49. M. S. Huda, A. K. Mohanty, L. T. Drzal, E. Schut, and M. Misra, J. Mater. Sci., 40, 4221 (2005).

    CAS  Google Scholar 

  50. R. Sukmawan, H. Takagi, and A. N. Nakagaito, Compos. Part B, 84, 9 (2016).

    CAS  Google Scholar 

  51. B. Bax and J. Müssig, Compos. Sci. Technol., 68, 1601 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are gratefully acknowledged to Universiti Putra Malaysia (UPM) for funding this research through Geran Putra Berimpak (GPB), UPM/800-3/3/1/GPB/2019/9679800.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Sapuan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sherwani, S.F.K., Sapuan, S.M., Leman, Z. et al. Physical, Mechanical and Morphological Properties of Sugar Palm Fiber Reinforced Polylactic Acid Composites. Fibers Polym 22, 3095–3105 (2021). https://doi.org/10.1007/s12221-021-0407-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0407-1

Keywords

  • Biocomposite
  • Sugar Palm fiber
  • Polylactic acid
  • Sugar palm fiber-reinforced composites
  • Mechanical properties