Skip to main content
Log in

Influence of the Melt Extrusion Process on the Mechanical Behavior and the Thermal Properties of Ethylene Vinyl Alcohol Copolymer by Applying the Successive Self-nucleation and Annealing Thermal Fractionation

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Ethylene vinyl alcohol copolymer was processed three times in a twin-screw extrusion pilot plant in order to reproduce the processing steps required to obtain EVOH nanocomposites. Thin film of the extruded EVOH was prepared by using a cast-film line. The melt flow index and rheological behavior of the film were determined. Viscoelastic parameters were evaluated in a dynamic mechanical testing instrument that revealed the presence of two signals, one attributed to the glass transition temperature and the other one related to the structural modifications associated to interlamellar separation. Thermal properties were evaluated in a differential scanning calorimetry by applying a standard evaluation and successive self-nucleation and annealing approach, finding structural modifications influenced by the melt extrusion process, although the overall percentage of crystallinity degree remains similar. Based on the structural results, the mechanical properties were evaluated considering the ethylene content and resulting on distinct mechanical behavior. Lower ethylene content allows the chain orientation induced during the processing of the film that favors the mechanical performance. Higher ethylene content promotes different deformation mechanisms and a relevant ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Pérez, M. Luján, and J. Martínez de Salazar, Macromol. Chem. Phys., 201, 1323 (2000).

    Article  Google Scholar 

  2. S. Ramakrishnan, Macromolecules, 24, 3753 (1991).

    Article  CAS  Google Scholar 

  3. J. I. Jones in “Polyvinyl Alcohol. Properties and Applications” (C. A. Finch Ed.), John Wiley, Chichester, 1973.

  4. D. L. VanderHart, S. Simmons, and J. W. Gilman, Polymer, 36, 4223 (1995).

    Article  CAS  Google Scholar 

  5. M. Muramatsu, M. Okura, K. Kuboyama, T. Ougizawa, T. Yamamoto, Y. Nishihara, Y. Saito, K. Ito, K. Hirata, and Y. Kobayashi, Rad. Phys. Chem., 68, 561 (2003).

    Article  CAS  Google Scholar 

  6. X. Wang, W. Fang, D. Yan, D. Han, J. Liu, Z. Ren, C. Ouyang, Y. Li, Q. Wang, and A. Cao, J. Environ. Manag., 236, 687 (2019).

    Article  CAS  Google Scholar 

  7. L. Cabedo, J. M. Lagarón, D. Cava, J. J. Saura, and E. Giménez, Polym. Test., 25, 860 (2006).

    Article  CAS  Google Scholar 

  8. A. Blanchard, F. Gouanvé, and E. Espuche, J. Membr. Sci., 540, 1 (2017).

    Article  CAS  Google Scholar 

  9. R. S. McWatters and R. K. Rowe, Geotext. Geomembr., 46, 529 (2018).

    Article  Google Scholar 

  10. I. Topolniak, J.-L. Gardette, and S. Therias, Polym. Degrad. Stabil., 121, 137 (2015).

    Article  CAS  Google Scholar 

  11. J. P. Cerisuelo, R. Gavara, and P. Hernández-Muñoz, J. Membr. Sci., 482, 92 (2015).

    Article  CAS  Google Scholar 

  12. L. Cabedo, M. P. Villanueva, J. M. Lagarón, and E. Giménez, Appl. Clay Sci., 135, 300 (2017).

    Article  CAS  Google Scholar 

  13. E. Franco-Urquiza, J. G. Perez, M. Sánchez-Soto, O. O. Santana, and M. L. Maspoch, Polym. Int., 59, 778 (2010).

    Article  CAS  Google Scholar 

  14. E. A. Franco-Urquiza, J. Gámez-Pérez, J. C. Velázquez-Infante, O. Santana, A. M. Benasat, and M. L. Maspoch, Adv. Polym. Technol., 32, E287 (2013).

    Article  CAS  Google Scholar 

  15. D. R. Paul and L. M. Robeson, Polymer, 49, 3187 (2008).

    Article  CAS  Google Scholar 

  16. S. Sinha Ray and M. Okamoto, Prog. Polym. Sci., 28, 1539 (2003).

    Article  Google Scholar 

  17. S. Pavlidou and C. D. Papaspyrides, Prog. Polym. Sci., 33, 1119 (2008).

    Article  CAS  Google Scholar 

  18. L. Sangroniz, D. Cavallo, and A. J. Müller, Macromolecules, 53, 4581 (2020).

    Article  CAS  Google Scholar 

  19. A. J. Müller, R. M. Michell, R. A. Pérez, and A. T. Lorenzo, Eur. Polym. J., 65, 132 (2015).

    Article  Google Scholar 

  20. M. L. Arnal, V. Balsamo, G. Ronca, A. Sánchez, A. J. Müller, E. Cañizales, and C. de Navarro, J. Therm. Anal. Calorim., 59, 451 (2000).

    Article  CAS  Google Scholar 

  21. A. J. Müller, Z. H. Hernández, M. L. Arnal, and J. J. Sánchez, Polym. Bull., 39, 465 (1997).

    Article  Google Scholar 

  22. M. L. Cerrada, E. Pérez, J. M. Pereña, and R. Benavente, Macromolecules, 31, 2559 (1998).

    Article  CAS  Google Scholar 

  23. E. Franco-Urquiza, O. O. Santana, J. Gámez-Pérez, A. B. Martínez, and M. Ll. Maspoch, Exp. Polym. Lett., 4, 153 (2010).

    Article  CAS  Google Scholar 

  24. N. Artzi, A. Tzur, M. Narkis, and A. Siegmann, Polym. Compos., 26, 343 (2005).

    Article  CAS  Google Scholar 

  25. V. Miri, G. Jones, R. Kaas, A. Hiltner, and E. Baer, J. Mater. Sci., 37, 2635 (2002).

    Article  Google Scholar 

  26. L. Cabedo, M. P. Villanueva, J. M. Lagarón, and E. Giménez, Appl. Clay Sci., 135, 300 (2017).

    Article  CAS  Google Scholar 

  27. M. L. Cerrada, R. Benavente, E. Pérez, and J. M. Pereña, Macromol. Chem. Phys., 201, 1858 (2000).

    Article  CAS  Google Scholar 

  28. A. J. Müller and M. L. Arnal, Prog. Polym. Sci., 30, 559 (2005).

    Article  Google Scholar 

  29. G. Leone, M. Canetti, I. Pierro, G. Zanchin, C. De Rosa, G. Ricci, and F. Bertini, Polymer, 166, 27 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Council for Science and Technology (CONACYT) of Mexico for their financial support through the SEP-CONACYT program with grant number CB-2015-01-257458.

Franco-Urquiza conveys his special appreciation to the National Council of Science and Technology of Mexico (CONACYT) and to the Research Fellow Program (Cátedras CONACYT) of this Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar A. Franco-Urquiza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco-Urquiza, E.A., Santana, O. & Maspoch, M.L. Influence of the Melt Extrusion Process on the Mechanical Behavior and the Thermal Properties of Ethylene Vinyl Alcohol Copolymer by Applying the Successive Self-nucleation and Annealing Thermal Fractionation. Fibers Polym 22, 1822–1829 (2021). https://doi.org/10.1007/s12221-021-0386-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0386-2

Keywords

Navigation