Skip to main content
Log in

Mechanical Reinforcement of Lime Pastes by Electrospun Cellulose Acetate Polymer Fibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Lime-based composites have been extensively used throughout the years as plasters/renders and jointing mortars in building construction. However, the low flexural strength and tensile ductility of these composite building materials, that are currently still used in the structural and thermal upgrading of existing structures of high cultural and architectural significance, have been a significant drawback. Therefore, researchers have been focusing on the development of novel composites involving the use of additives to enhance the tensile and flexural capacity of lime-based materials. For the first time in this study, naturally-derived polymer fibers produced by electrospinning have been successfully introduced as additives in lime pastes aiming to investigate their effect on the mechanical performance of the end composites. More precisely, the introduction of electrospun cellulose acetate (CA) microfibers within lime pastes resulted to a tremendous improvement of the mechanical properties of the latter. Consequently, the present study paves the pathway towards the use of electrospun fibrous additives in the development of advanced composite lime-based building materials, which is currently an unexplored area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Costi De Castrillo, M. Philokyprou, and I. Ioannou, J. Archaeol. Sci.: Reports, 12, 437 (2017).

    Google Scholar 

  2. A. V. Georgiou and S. J. Pantazopoulou, Constr. Build. Mater., 125, 1216 (2016).

    Article  CAS  Google Scholar 

  3. B. Arisoy and H.-C. Wu, Constr. Build. Mater., 22, 635 (2008).

    Article  Google Scholar 

  4. M. Theodoridou, I. Ioannou, and M. Philokyprou, J. Archaeol. Sci., 40, 3263 (2013).

    Article  CAS  Google Scholar 

  5. A. Izaguirre, J. Lanas, and J. I. Alvarez, Constr. Build. Mater., 25, 992 (2011).

    Article  Google Scholar 

  6. P. S. Song, S. Hwang, and B. C. Sheu, Cement Concrete Res., 35, 1546 (2005).

    Article  CAS  Google Scholar 

  7. D. Asprone, E. Cadoni, F. Iucolano, and A. Prota, Cement Concrete Comp., 53, 52 (2014).

    Article  CAS  Google Scholar 

  8. S. Jian, J. Zhu, S. Jiang, S. Chen, H. Fang, Y. Song, G. Duan, Y. Zhang, and H. Hou, RSC Adv., 8, 4794 (2018).

    Article  CAS  Google Scholar 

  9. J. Doshi and D. H. Reneker, J. Electrostat., 35, 151 (1995).

    Article  CAS  Google Scholar 

  10. D. H. Reneker, A. L. Yarin, E. Zussman, and H. Xu in “Advances in Applied Mechanics” (H. Aref and E. Van Der Giessen Eds.), Vol. 41, pp.43–195, 345–346, Elsevier, 2007.

  11. K. Molnar, A. Jedlovszky-Hajdu, M. Zrinyi, S. Jiang, and S. Agarwal, Macromol. Rapid Commun., 38, 1700147 (2017).

    Article  Google Scholar 

  12. S. Jiang, N. Helfricht, G. Papastavrou, A. Greiner, and S. Agarwal, Macromol. Rapid Commun., 39, 1700838 (2018).

    Article  Google Scholar 

  13. J. Xue, J. Xie, W. Liu, and Y. Xia, Acc. Chem. Res., 50, 1976 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. S. Ramakrishna, K. Fujihara, W.-E. Teo, T. Yong, Z. Ma, and R. Ramaseshan, Mater. Today, 9, 40 (2006).

    Article  CAS  Google Scholar 

  15. S. Thenmozhi, N. Dharmaraj, K. Kadirvelu, and H. Y. Kim, Mater. Sci. Eng. B, 217, 36 (2017).

    Article  CAS  Google Scholar 

  16. S. Agarwal, J. H. Wendorff, and A. Greiner, Polymer, 49, 5603 (2008).

    Article  CAS  Google Scholar 

  17. R. S. Bhattarai, R. D. Bachu, S. H. S. Boddu, and S. Bhaduri, Pharmaceutics, 11, 5 (2018).

    Article  PubMed Central  Google Scholar 

  18. I. Savva and T. Krasia-Christoforou in “Handbook of Magnetic Nanoparticles: Synthesis, Physicochemical Properties and Role in Biomedicine” (N. P. Sabbas Ed.), Chapter 6, pp.163–199, Nova Science Publishers, Inc., New York, USA, 2014.

  19. I. Savva and T. Krasia-Christoforou in “Nanomaterials and Regenerative Medicine” (Y. Lin and T. Gong Eds.), Chapter 6, pp.145–160, IAPC-OBP, Zagreb, 2016.

  20. T. Wu, M. Ding, C. Shi, Y. Qiao, P. Wang, R. Qiao, X. Wang, and J. Zhong, Chinese Chem. Lett., 31, 617 (2020).

    Article  CAS  Google Scholar 

  21. X. Guiying, Fiber. Polym., 17, 194 (2016).

    Article  Google Scholar 

  22. I. Savva, A. S. Kalogirou, A. Chatzinicolaou, P. Papaphilippou, A. Pantelidou, E. Vasile, E. Vasile, P. A. Koutentis, and T. Krasia-Christoforou, RSC Adv., 4, 44911 (2014).

    Article  CAS  Google Scholar 

  23. I. Savva, A. S. Kalogirou, M. Achilleos, E. Vasile, P. A. Koutentis, and T. Krasia-Christoforou, Molecules, 21, 1218 (2016).

    Article  PubMed Central  Google Scholar 

  24. D. Im, D. Kim, D. Jeong, W. I. Park, M. Chun, J.-S. Park, H. Kim, and H. Jung, J. Mater. Sci. Technol., 38, 56 (2020).

    Article  Google Scholar 

  25. S.-X. Wang, C. C. Yap, J. He, C. Chen, S. Y. Wong, and X. Li, Nanotechnol. Rev., 5, 51 (2016).

    Google Scholar 

  26. C. Christou and T. Krasia-Christoforou in “Advances in Nanostructured Materials and Nanopatterning Technologies” (V. Guarino, M. L. Focarete, and D. Pisignano Eds.), Chapter 8, pp.203–241, Elsevier, 2020.

  27. G. Sun, L. Sun, H. Xie, and J. Liu, Nanomaterials, 6, 129 (2016).

    Article  PubMed Central  Google Scholar 

  28. X. Shi, W. Zhou, D. Ma, Q. Ma, D. Bridges, Y. Ma, and A. Hu, J. Nanomater., 2015, 1 (2015).

    Google Scholar 

  29. K. Huizhen, Fiber. Polym., 17, 1198 (2016).

    Article  Google Scholar 

  30. S. Jiang, Y. Chen, G. Duan, C. Mei, A. Greiner, and S. Agarwal, Polym. Chem., 9, 2685 (2018).

    Article  CAS  Google Scholar 

  31. D. Wang, J. Yu, G. Duan, K. Liu, and H. Hou, J. Mater. Sci., 55, 5667 (2020).

    Article  CAS  Google Scholar 

  32. L. Zhao, G. Duan, G. Zhang, H. Yang, S. He, and S. Jiang, Nanomaterials, 10, 150 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  33. S. Jiang, J. Y. Cheong, J. S. Nam, I.-D. Kim, S. Agarwal, and A. Greiner, ACS Appl. Mater. Inter., 12, 19006 (2020).

    Article  CAS  Google Scholar 

  34. S. Jiang, G. Duan, U. Kuhn, M. Mörl, V. Altstädt, A. L. Yarin, and A. Greiner, Angew. Chem. Int. Ed., 56, 3285 (2017).

    Article  CAS  Google Scholar 

  35. L. Liu, S. Luo, Y. Qing, N. Yan, Y. Wu, X. Xie, and F. Hu, Macromol. Rapid Commun., 39, 1870024 (2018).

    Article  Google Scholar 

  36. G. Duan, S. Liu, and H. Hou, e-Polymers, 18, 569 (2018).

    Article  CAS  Google Scholar 

  37. H. Xu, S. Jiang, C. Ding, Y. Zhu, J. Li, and H. Hou, Mater. Lett., 201, 82 (2017).

    Article  CAS  Google Scholar 

  38. Y. Feng, T. Xiong, H. Xu, C. Li, and H. Hou, Mater. Lett., 182, 59 (2016).

    Article  CAS  Google Scholar 

  39. S. Jiang, G. Duan, L. Chen, X. Hu, Y. Ding, C. Jiang, and H. Hou, New J. Chem., 39, 7797 (2015).

    Article  CAS  Google Scholar 

  40. B. Ding, E. Kimura, T. Sato, S. Fujita, and S. Shiratori, Polymer, 45, 1895 (2004).

    Article  CAS  Google Scholar 

  41. K. Rodríguez, J. Sundberg, P. Gatenholm, and S. Renneckar, Carbohydr. Polym., 100, 143 (2014).

    Article  PubMed  Google Scholar 

  42. J. Plank, B. Sachsenhauser, and J. De Reese, Cement Concrete Res., 40, 699 (2010).

    Article  CAS  Google Scholar 

  43. S. Koombhongse, W. Liu, and D. H. Reneker, J. Polym. Sci. Polym. Phys., 39, 2598 (2001).

    Article  CAS  Google Scholar 

  44. M. W. Frey, Polym. Rev., 48, 378 (2008).

    Article  CAS  Google Scholar 

  45. S. Tungprapa, T. Puangparn, M. Weerasombut, I. Jangchud, P. Fakum, S. Semongkhol, C. Meechaisue, and P. Supaphol, Cellulose, 14, 563 (2007).

    Article  CAS  Google Scholar 

  46. M. S. Konsta-Gdoutos, G. Batis, P. A. Danoglidis, A. K. Zacharopoulou, E. K. Zacharopoulou, M. G. Falara, and S. P. Shah, Constr. Build. Mater., 147, 48 (2017).

    Article  CAS  Google Scholar 

  47. E. E. Gdoutos, M. S. Konsta-Gdoutos, and P. A. Danoglidis, Cement Concrete Comp., 70, 110 (2016).

    Article  CAS  Google Scholar 

  48. Z. S. Metaxa, M. S. Konsta-Gdoutos, and S. P. Shah, ACI Special Publication, 270, 115 (2010).

    Google Scholar 

  49. P. A. Danoglidis, M. S. Konsta-Gdoutos, E. E. Gdoutos, and S. P. Shah, Constr. Build. Mater., 120, 265 (2016).

    Article  CAS  Google Scholar 

  50. V. C. Li, S. Wang, and C. Wu, ACI Mater. J., 98, 483 (2001).

    CAS  Google Scholar 

  51. T. Kanda and V. C. Li, J. Mater. Civil Eng., 10, 5 (1998).

    Article  CAS  Google Scholar 

  52. H. R. Pakravan, M. Jamshidi, and M. Latifi, Proceed., The 3rd International Conference on Concrete and Development, p.149, 2009.

  53. A. Badanoiu and J. Holmgren, Cement Concrete Comp., 25, 387 (2003).

    Article  CAS  Google Scholar 

  54. A. Peled and A. Bentur, Cement Concrete Res., 30, 781 (2000).

    Article  CAS  Google Scholar 

  55. A. Peled, E. Zaguri, and G. Marom, Compos. Part A Appl. Sci. Manuf., 39, 930 (2008).

    Article  Google Scholar 

  56. E. Maccaferri, L. Mazzocchetti, T. Benelli, T. M. Brugo, A. Zucchelli, and L. Giorgini, Mater. Des., 186, 108210 (2020).

    Article  CAS  Google Scholar 

  57. E. Maccaferri, L. Mazzocchetti, T. Benelli, A. Zucchelli, and L. Giorgini, Compos. Part B-Eng., 166, 120 (2019).

    Article  CAS  Google Scholar 

  58. T. Stylianopoulos, M. Kokonou, S. Michael, A. Tryfonos, C. Rebholz, A. D. Odysseos, and C. Doumanidis, J. Biomed. Mater. Res. B., 100B, 2222 (2012).

    Article  CAS  Google Scholar 

  59. H. Li, H.-G. Xiao, J. Yuan, and J. Ou, Compos. Part B-Eng., 35, 185 (2004).

    Article  Google Scholar 

  60. H. S. Barud, A. M. De Araújo Júnior, D. B. Santos, R. M. N. De Assunção, C. S. Meireles, D. A. Cerqueira, G. Rodrigues Filho, C. A. Ribeiro, Y. Messaddeq, and S. J. L. Ribeiro, Thermochim. Acta, 471, 61 (2008).

    Article  CAS  Google Scholar 

  61. S. Wu, X. Qin, and M. Li, J. Ind. Text., 44, 85 (2014).

    Article  CAS  Google Scholar 

  62. E. Menéndez, L. Vega, and C. Andrade, J. Therm. Anal. Calorim., 110, 203 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Cyprus. We are grateful to Dr. T. Stylianopoulos and Dr. C. Voutouri (Department of Mechanical and Manufacturing Engineering, University of Cyprus) for the mechanical analysis of the asprepared CA electrospun fibers. We also thank Dr. P. Koutentis (University of Cyprus, Department of Chemistry) for providing access to the FTIR-NIR spectrometer and Dr. A. Kalogirou (European University Cyprus) for performing the FTIR analysis of the electrospun fibers.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ioannis Ioannou or Theodora Krasia-Christoforou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chousidis, N., Charalambous, O., Zymaride, M. et al. Mechanical Reinforcement of Lime Pastes by Electrospun Cellulose Acetate Polymer Fibers. Fibers Polym 22, 676–684 (2021). https://doi.org/10.1007/s12221-021-0378-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0378-2

Keywords

Navigation