Skip to main content
Log in

Efficient Removal of Lead and Copper from Aqueous Solutions by Using Modified Polyacrylonitrile Nanofiber Membranes

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The performance of the prepared polyacrylonitrile (PAN) nanofiber membrane by electrospinning process for the removal of lead and copper ions from aqueous solutions was investigated. The optimum electrospinning conditions were obtained to be 14 wt% concentration, 20 kV voltages, 120 mm tips to collector distance and 0.8 ml h−1 flow rate. Chemical functionalities were grafted by a two steps grafting process which involves hydrolysis and chemical modification with ethyleneglycol (EG), ethylenediamine (EDA), diethylenetriamine (DTA). The prepared nanofibers were characterized by Attenuated total reflectance-Fourier transform infrared (ATR-FTIR), Scanning Electron Microscope (SEM), Atomic Force Microscopy (AFM), UV-Visible Spectrophotometer and Energy Dispersive X-ray Spectroscopy (EDS or EDX) analysis. The adsorption capacity of Cu2+ and Pb2+ ions on modified PAN nanofiber mats were evaluated by atomic absorption spectroscopy (AAS). Adsorption isotherms were used to find the model of the adsorption behavior and to calculate the removal percentage. The results show that modified nanofibers with ethylenediamine have the maximum adsorption capacity about of 22.954 mmol/gr and 12.367 mmol/gr for Cu2+ and Pb2+ ions, respectively. Therefore, these modified nanofibers open up delighted opportunities for the efficient removal of Pb2+ and Cu2+ from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Yun and D. S. Woo, J. Korean Soc. Water Wastewater., 33, 281 (2019).

    Article  Google Scholar 

  2. S. Bolisetty, M. Peydayesh, and R. Mezzenga, Chem. Soc. Rev., 48, 463 (2019).

    Article  CAS  Google Scholar 

  3. I. Tlili and T. A. Alkanhal, J. Water Reuse Desalin., 9, 232 (2019).

    Article  CAS  Google Scholar 

  4. Y. Li, M. A. Abedalwafa, C. Ni, N. Sanbhal, and L. Wang, React. Funct. Polym., 138, 18 (2019).

    Article  CAS  Google Scholar 

  5. M. E. Mahmoud, M. M. Osman, O. F. Hafez, and E. Elmelegy, J. Hazard. Mater., 173, 349 (2010).

    Article  CAS  Google Scholar 

  6. M. Aliabadi, M. Irani, J. Ismaeili, and S. Najafzadeh, J. Taiwan Inst. Chem. Eng., 45, 518 (2014).

    Article  CAS  Google Scholar 

  7. U. Farooq, J. A. Kozinski, M. A. Khan, and M. Athar, Bioresour. Technol., 101, 5043 (2010).

    Article  CAS  Google Scholar 

  8. C. Luo, J. Wang, P. Jia, Y. Liu, J. An, B. Cao, and K. Pan, Chem. Eng. J., 262, 775 (2015).

    Article  CAS  Google Scholar 

  9. S. Deng, P. Wang, G. Zhang, and Y. Dou, J. Hazard. Mater., 307, 64 (2016).

    Article  CAS  Google Scholar 

  10. P. Bhunia, S. Chatterjee, P. Rudra, and S. De, Sep. Purif. Technol., 193, 202 (2018).

    Article  CAS  Google Scholar 

  11. P. Tahaei, M. Abdouss, M. Edrissi, A. M. Shoushtari, M. Zargaran, Materialwiss. Werkstofftech., 39, 839 (2008).

    Article  CAS  Google Scholar 

  12. P. K. Neghlani, M. Rafizadeh, and F. A. Taromi, J. Hazard. Mater., 186, 182 (2011).

    Article  CAS  Google Scholar 

  13. C. Chen, F. Li, Z. Guo, X. Qu, J. Wang, and J. Zhang, Colloids Surf. A., 568, 334 (2019).

    Article  CAS  Google Scholar 

  14. J. Guo, Y. Han, Y. Mao, and M. N. Wickramaratne, A Physicochem. Eng. Asp., 529, 801 (2017).

    Article  CAS  Google Scholar 

  15. K. Yang, G. Wang, X. Chen, X. Wang, and F. Liu, Colloids Surf. A Physicochem. Eng. Asp., 558, 384 (2018).

    Article  CAS  Google Scholar 

  16. A. R. Allafchian, A. Shiasi, and R. Amiri, J. Taiwan Inst. Chem. Eng., 80, 563 (2017).

    Article  CAS  Google Scholar 

  17. B. Sun, X. Li, R. Zhao, M. Yin, Z. Wang, Z. Jiang, and C. Wang, J. Taiwan Inst. Chem. Eng., 62, 219 (2016).

    Article  CAS  Google Scholar 

  18. P. Kampalanonwat and P. Supaphol, ACS Appl. Mater. Interfaces, 2, 3619 (2010).

    Article  CAS  Google Scholar 

  19. X. Liu, Q. Hu, Z. Fang, X. Zhang, and B. Zhang, Langmuir, 25, 3 (2009).

    Article  CAS  Google Scholar 

  20. K. Saeed, S. Haider, T. J. Oh, and S. Y. Park, J. Membr. Sci., 322, 400 (2008).

    Article  CAS  Google Scholar 

  21. D. M. Martín, M. Faccini, M. A. García, and D. Amantia, J. Environ. Chem. Eng., 6, 236 (2018).

    Article  Google Scholar 

  22. Y. G. Ko, U. S. Choi, T. Y. Kim, D. J. Ahn, and Y. J. Chun, Macromol. Rapid Commun., 23, 535 (2002).

    Article  CAS  Google Scholar 

  23. J. Sutasinpromprae, S. Jitjaicham, M. Nithitanakul, C. Meechaisue, and P. Supaphol, Polym. Int., 55, 825 (2006).

    Article  CAS  Google Scholar 

  24. P. S. Kumar, K. Venkatesh, E. L. Gui, S. Jayaraman, G. Singh, and G. Arthanareeswaran, J. Environ. Nanotechnol., 10, 366 (2018).

    Google Scholar 

  25. K. Saeed, S. Y. Park, and T. J. Oh, J. Appl. Polym. Sci., 121, 869 (2011).

    Article  CAS  Google Scholar 

  26. X. Li, C. Zhang, R. Zhao, X. Lu, X. Xu, X. Jia, C. Wang, and L. Li, Chem. Eng. J., 229, 420 (2013).

    Article  CAS  Google Scholar 

  27. M. Tabarzadi, M. Abdouss, M. Javanbakht, S. A. M. Shoushtary, M. Zargaran, and A. Dashtizadeh, Mater. Sci. Eng. Technol., 40, 643 (2009).

    CAS  Google Scholar 

  28. N. Ma, Y. Yang, S. Chen, and Q. Zhang, J. Hazard. Mater., 171, 288 (2009).

    Article  CAS  Google Scholar 

  29. R. Zhao, X. Li, B. Sun, M. Shen, X. Tan, Y. Ding, Z. Jiang, and C. Wang, Chem. Eng. J., 268, 290 (2015).

    Article  CAS  Google Scholar 

  30. J. Meng, J. Cao, R. Xu, Z. Wang, and R. Sun, J. Mater. Chem. A., 4, 11656 (2016).

    Article  CAS  Google Scholar 

  31. S. Dong, W. Han, M. Liu, Z. Zhang, B. Li, and L. Ge, Colloids Surf. A., 509, 32 (2016).

    Article  CAS  Google Scholar 

  32. F. K. Mahar, L. He, K. Wei, M. Mehdi, M. Zhu, J. Gu, K. Zhang, Z. Khatri, and I. Kim, Chemosphere, 225, 360 (2019).

    Article  CAS  Google Scholar 

  33. S. Behera, S. Ghanty, F. Ahmad, S. Santra, and S. Banerjee, J. Anal. Bioanal. Tech., 3, 151 (2012).

    Article  Google Scholar 

  34. C. Chen, F. Li, Z. Guo, X. Qu, J. Wang, and J. Zhang, Colloids Surf. A., 568, 334 (2019).

    Article  CAS  Google Scholar 

  35. G. Dognani, P. Hadi, H. Ma, F. C. Cabrera, A. E. Job, D. L. Agostini, and B. S. Hsiao, Chem. Eng. J., 372, 341 (2019).

    Article  CAS  Google Scholar 

  36. F. Huang, Y. Xu, S. Liao, D. Yang, Y. L. Hsieh, and Q. Wei, Materials, 6, 969 (2013).

    Article  CAS  Google Scholar 

  37. C. A. Bode-Aluko, O. Pereao, O. Fatoba, and L. Petrik, Polym. Bull., 74, 2431 (2017).

    Article  CAS  Google Scholar 

  38. R. Zhao, X. Li, B. Sun, Y. Li, R. Yang, and C. Wang, J. Mater. Chem. A., 5, 1133 (2017).

    Article  CAS  Google Scholar 

  39. J. Qiu, F. Liu, S. Cheng, L. Zong, C. Zhu, C. Ling, and A. Li, ACS Sustainable Chem. Eng., 6, 447 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Golestan Province Water and Wastewater Company. This work was supported by the Golestan University (project No. 3253/100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanieh Shaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajabi, S., Shaki, H. Efficient Removal of Lead and Copper from Aqueous Solutions by Using Modified Polyacrylonitrile Nanofiber Membranes. Fibers Polym 22, 694–702 (2021). https://doi.org/10.1007/s12221-021-0284-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0284-7

Keywords

Navigation