Skip to main content
Log in

Biocompatibility of Polyimide Fibers with Human Gastric Cells In Vitro

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The selection of calibration materials and methods is of great significance, since accurate localization of intragastric lesions is crucial for diagnosis and post-treatment follow-up of gastric cancer. In this study, a novel suturing calibration method was adopted using polyimide (PI) fibers with outstanding comprehensive properties as the calibration material. The acid resistance in vitro of PI fibers and biocompatibility to MGC-803 human gastric cancer cells were investigated. In the simulated gastric acid erosion environment, the color of PI fibers remained to be bright yellow and the tensile strength maintained at 1.09 GPa without degradation of chemical structure. Moreover, PI fibers possessed high crystallinity, smooth surface as well as high-oriented fractured morphologies, and exhibited excellent structural and property resistance to simulated gastric acid, which was responsible for the biocompatibility. PI fibers showed no influence on the viability, morphology or lactate dehydrogenase level of gastric cells through direct and indirect extract contact. Therefore, PI fibers showed good stability in simulated gastric acid and were not cytotoxic to human gastric cells, suggesting their utility as markers of intragastric lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Chen, R. Zhen, P. D. Baade, S. Zhang, H. Zeng, F. Bray, A. Jemal, X. Q. Yu, and J. He, CA Cancer J. Clin., 66, 115 (2016).

    Article  Google Scholar 

  2. F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, CA Cancer J. Clin., 68, 394 (2018).

    Article  Google Scholar 

  3. V. E. Strong, A. Wu, L. V. Selby, M. Gonen, M. Hsu, K. Y. Song, C. H. Park, D. G. Coit, J. Ji, and M. F. Brennan, J. Surg. Oncol., 112, 31 (2015).

    Article  Google Scholar 

  4. S. Tanabe, S. Hirabayashi, I. Oda, H. Ono, A. Nashimoto, Y. Isobe, I. Miyashiro, S. Tsujitani, Y. Seto, T. Fukagawa, S. Nunobe, H. Furukawa, Y. Kodera, M. Kaminishi, and H. Katai, Gastric Cancer, 20, 834 (2017).

    Article  Google Scholar 

  5. J. Si, L. Sun, Y. Fan, and L. Wang, World J. Gastroenterol., 11, 1859 (2005).

    Article  Google Scholar 

  6. L. Sun, J. Si, S. Chen, W. Liu, L. Zhao, and L. Wang, Gastroenterology, 56, 59 (2009).

    Google Scholar 

  7. E. Coman, L. J. Brandt, S. Brenner, M. Frank, B. Sablay, and B. Bennett, Gastrointest Endosc., 37, 65 (1991).

    Article  CAS  Google Scholar 

  8. H. Chiba, J. Tachikawa, D. Kurihara, K. Ashikari, A. Takahashi, H. Kuwabara, M. Nakaoka, T. Morohashi, T. Goto, K. Ohata, and A. Nakajima, Clin. J. Gastroenterol., 10, 426 (2017).

    Article  Google Scholar 

  9. D. Gianom, A. Hollinger, and H. P. Wirth, Swiss Surg., 9, 307 (2003).

    Article  CAS  Google Scholar 

  10. L. M. Alba, P. K. Pandya, and W. K. Clarkston, Gastrointest Endosc., 52, 557 (2000).

    Article  CAS  Google Scholar 

  11. D. Sun, W. Hu, W. Wu, J. Liu, H. Duan, and J. Si, J. Med. Syst., 36, 2909 (2012).

    Article  Google Scholar 

  12. J. Chang, Q. Ge, M. Zhang, W. Liu, L. Cao, H. Niu, G. Sui, and D. Wu, RSC Adv., 5, 69555 (2015).

    Article  CAS  Google Scholar 

  13. M. Hasegawa and K. Horie, Prog. Polym. Sci., 26, 259 (2001).

    Article  CAS  Google Scholar 

  14. D. Shao, C. Xu, J. Du, and H. Wang, Fiber. Polym., 21, 1783 (2020).

    Article  CAS  Google Scholar 

  15. M. Xiao, J. Li, H. Lei, M. Zhang, H. Niu, D. Wu, and X. Wang, Fiber. Polym., 21, 944 (2020).

    Article  CAS  Google Scholar 

  16. Q. Li, G. Liao, S. Zhang, L. Pang, H. Tong, W. Zhao, and Z. Xu, Appl. Surf. Sci., 427, 437 (2018).

    Article  CAS  Google Scholar 

  17. Q. Li, R. Chen, Y. Guo, F. Lei, Z. Xu, H. Zhao, and G. Liao, Polymers-Basel, 12, 88 (2020).

    Article  CAS  Google Scholar 

  18. I. Stoica, A. I. Barzic, M. Butnaru, F. Doroftei, and C. Hulubei, J. Adhes. Sci. Technol., 29, 2190 (2015).

    Article  CAS  Google Scholar 

  19. S. Sridar, M. A. Churchward, V. K. Mushahwar, K. G. Todd, and A. L. Elias, Acta Biomater., 60, 154 (2017).

    Article  CAS  Google Scholar 

  20. A. Subrizi, H. Hiidenmaa, T. Ilmarinen, S. Nymark, P. Dubruel, H. Uusitalo, M. Yliperttula, A. Urtti, and H. Skottman, Biomaterials, 33, 8047 (2012).

    Article  CAS  Google Scholar 

  21. S. Wurth, M. Capogrosso, S. Raspopovic, J. Gandar, G. Federici, N. Kinany, A. Cutrone, A. Piersigilli, N. Pavlova, R. Guiet, G. Taverni, J. Rigosa, P. Shkorbatova, X. Navarro, Q. Barraud, G. Courtine, and S. Micera, Biomaterials, 122, 114 (2017).

    Article  CAS  Google Scholar 

  22. C. P. Constantin, M. Aflori, R. F. Damian, and R. D. Rusu, Materials, 12, 3166 (2019).

    Article  CAS  Google Scholar 

  23. F. Waschkowski, S. Hesse, A. C. Rieck, T. Lohmann, C. Brockmann, T. Laube, N. Bornfeld, G. Thumann, P. Walter, W. Mokwa, S. Johnen, and G. Roessler, Biomed. Eng. Online, 13, 11 (2014).

    Article  Google Scholar 

  24. Q. Li, J. Li, G. Liao, and Z. Xu, J. Mater. Sci., 29, 126 (2018).

    Google Scholar 

  25. J. M. Seo, S. J. Kim, H. Chung, E. T. Kim, H. G. Yu, and Y. S. Yu, Mat. Sci. Eng., 24, 185 (2004).

    Article  Google Scholar 

  26. D. N. Heo, H. J. Kim, Y. J. Lee, M. Heo, S. J. Lee, D. Lee, S. H. Do, S. H. Lee, and I. K. Kwon, ACS Nano, 11, 2961 (2017).

    Article  CAS  Google Scholar 

  27. P. M. Rossini, S. Micera, A. Benvenuto, J. Carpaneto, G. Cavallo, L. Citi, C. Cipriani, L. Denaro, V. Denaro, G. D. Pino, F. Ferreri, E. Guglielmelli, K. P. Hoffmann, S. Raspopovic, J. Rigosa, L. Rossini, M. Tombini, and P. Dario, Clin. Neurophysiol., 121, 777 (2010).

    Article  Google Scholar 

  28. C. Hassler, T. Boretius, and T. Stieglitz, J. Polym. Sci. Part B Polym. Phys., 49, 18 (2011).

    Article  CAS  Google Scholar 

  29. B. Rubehn and T. Stieglitz, Biomaterials, 31, 3449 (2010).

    Article  CAS  Google Scholar 

  30. M. Sun, J. Chang, G. Tian, H. Niu, and D. Wu, J. Mat. Sci., 51, 2830 (2016).

    Article  CAS  Google Scholar 

  31. T. C. Martinsen, R. Fossmark, and H. L. Waldum, Int. J. Mol. Sci., 20, 6031 (2019).

    Article  CAS  Google Scholar 

  32. Y. Sun, S. P. Lacour, R. A. Brooks, N. Rushton, J. Fawcett, and R. E. Cameron, J. Biomed. Mater. Res. A, 90A, 648 (2009).

    Article  CAS  Google Scholar 

  33. M. Zhang, H. Niu, and D. Wu, Macromol. Rapid Commun., 39, 1800141 (2018).

    Article  Google Scholar 

  34. H. Niu, M. Huang, S. Qi, E. Han, G. Tian, X. Wang, and D. Wu, Polymer, 54, 1700 (2013).

    Article  CAS  Google Scholar 

  35. M. Zhang, H. Niu, Z. Lin, S. Qi, J. Chang, Q. Ge, and D. Wu, Macromol. Mater. Eng., 300, 1096 (2015).

    Article  CAS  Google Scholar 

  36. X. Yan, M. Zhang, S. Qi, G. Tian, H. Niu, and D. Wu, J. Mater. Sci., 53, 2193 (2018).

    Article  CAS  Google Scholar 

  37. J. Chang, H. Niu, M. He, M. Sun, and D. Wu, J. App. Polym. Sci., 132, 42474 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Gao, J. & Zhang, J. Biocompatibility of Polyimide Fibers with Human Gastric Cells In Vitro. Fibers Polym 22, 2380–2387 (2021). https://doi.org/10.1007/s12221-021-0199-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0199-3

Keywords

Navigation