Skip to main content
Log in

Structural Design and Property Evaluations of Foam-based Composite Materials: Effect of Perforation Depth and Foam Density on the Mechanical, Sound Absorption, and Thermal Properties

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Nonwoven fabrics and rigid polyurethane foam(PUF) are commonly used materials as building materials, but there are few studies on combining both materials and reporting characteristic evaluations for the application. In this study, N/L/Fr nonwoven fabrics are combined with PUF to produce N/PUF composites, and then a needle punching machine is used for perforation, thereby produces perforated N/PUF composites. With PUF densities being 70 kg/m3 and 80 kg/m3, a perforation depth of 100 % results in significantly decreasing mechanical properties. Based on the results of thermal conductivity coefficient, the employment of needle punch process results in a decrease in the thermal insulation of N/PUF composite; however, the descending level is comparatively smaller when PUF is made of a greater density. In the thermogravimetric analysis (TGA), the char residue is 4.86 % for PUF and 11.68 % for N/PUF composites, indicating that N/L/Fr nonwoven fabrics improve the thermal stability of PUF. As per limiting oxygen index (LOI), the part of proposed N/PUF composites that first contacts the flame is N/L/Fr nonwoven fabrics, which causes an LOI of 33 when in practical application and resembles the LOI (33) of N/L/Fr nonwoven fabrics. Based on the test results, the optimal perforated N/PUF composites are made of a PUF density of 80 kg/m3 and a perforation depth of 75 %, and the optimal compression strength is 375.29 kPa, which increases by 10.96 %. In addition, the proposed products have the same impact absorption capacity (5.88 J) as that of N/PUF composites, which absorb a total of 98.16 % impact energy. The sound absorption is improved in the frequency band of 800–2500 Hz, which broadens the sound absorption bandwidth and benefits the application as being sound absorbent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Xie, W. Yang, A. C. Y. Yuen, C. Xie, J. Xie, H. Lu, and G. H. Yeoh, Chem. Eng. J., 311, 310 (2017).

    Article  CAS  Google Scholar 

  2. W. Xi, L. Qian, Z. Huang, Y. Cao, and L. Li, Polym. Degrad. Stabil., 130, 97 (2016).

    Article  CAS  Google Scholar 

  3. C. A. Echeverria, F. Pahlevani, W. Handoko, C. Jiang, C. Doolan, and V. Sahajwalla, Resour. Conserv. Recycl., 143, 1 (2019).

    Article  Google Scholar 

  4. Z. Talebi, P. Soltani, N. Habibi, and F. Latifi, Constr. Build. Mater., 220, 76 (2019).

    Article  CAS  Google Scholar 

  5. X. Ji, H. Zhang, Z. Bai, G. Qiu, M. Guo, F. Cheng, and M. Zhang, Energ. Buildings, 205, 109533 (2019).

    Article  Google Scholar 

  6. X. Zhao and X. Fan, Appl. Acoust., 88, 123 (2015).

    Article  Google Scholar 

  7. S. K. Tang, C. H. Ng, and E. Y. L. Lam, Appl. Acoust., 73, 969 (2012).

    Article  Google Scholar 

  8. S.-H. Park, Sound Vib., 332, 4895 (2013).

    Article  Google Scholar 

  9. X.-D. Zhao, Y.-J. Yu, and Y.-J. Wu, Appl. Acoust., 114, 92 (2016).

    Article  Google Scholar 

  10. S. Islam and G. Bhat, J. Environ. Manage., 251, 109536 (2019).

    Article  Google Scholar 

  11. D. M. S. Al-Homoud, Build. Environ., 40, 353 (2005).

    Article  Google Scholar 

  12. A. Hadded, S. Benltoufa, F. Fayala, and A. Jemni, J. Build. Eng., 5, 34 (2016).

    Article  Google Scholar 

  13. A. Hao, H. Zhao, and J. Y. Chen, Compos. Part B-Eng., 54, 44 (2013).

    Article  CAS  Google Scholar 

  14. D.-A. Şerban, O. Weissenborn, S. Geller, L. Marşavina, and M. Gude, Polym. Test., 49, 121 (2016).

    Article  Google Scholar 

  15. S. Nam, B. D. Condon, Z. Xia, R. Nagarajan, D. J. Hinchliffe, and C. A. Madison, J. Anal. Appl. Pyrol., 126, 239 (2017).

    Article  CAS  Google Scholar 

  16. L. Qian, L. Li, Y. Chen, B. Xu, and Y. Qiu, Compos. Part B-Eng., 175, 107186 (2019).

    Article  CAS  Google Scholar 

  17. L. Liu and Z. Wang, Polym. Degrad. Stabil., 154, 62 (2018).

    Article  CAS  Google Scholar 

  18. C. S. Carriço, T. Fraga, and V. M. D. Pasa, Eur. Polym. J., 85, 53 (2016).

    Article  Google Scholar 

  19. X. Luo, A. Mohanty, and M. Misra, Ind. Crop. Prod., 47, 13 (2013).

    Article  CAS  Google Scholar 

  20. M. Zieleniewska, M. K. Leszczyński, L. Szczepkowski, A. Bryśkiewicz, M. Krzyżowska, K. Bień, and J. Ryszkowska, Polym. Degrad. Stabil., 132, 78 (2016).

    Article  CAS  Google Scholar 

  21. N. V. Gama, R. Silva, F. Mohseni, A. Davarpanah, V. S. Amaral, A. Ferreira, and A. Barros-Timmons, Polym. Test., 69, 199 (2018).

    Article  CAS  Google Scholar 

  22. Z. Zhang, D. Li, M. Xu, and B. Li, Polym. Degrad. Stabil., 173, 109077 (2020).

    Article  Google Scholar 

  23. N. N. P. Nik Pauzi, R. A. Majid, M. H. Dzulkifli, and M. Y. Yahya, Compos. Part B-Eng., 67, 521 (2014).

    Article  CAS  Google Scholar 

  24. Y.-C. Chuang, T.-T. Li, C.-H. Huang, C.-L. Huang, C.-W. Lou, Y.-S. Chen, and J.-H. Lin, Fiber. Polym., 17, 2116 (2016).

    Article  CAS  Google Scholar 

  25. J.-H. Lin, T.-T. Li, C.-H. Huang, Y.-C. Chuang, and C.-W. Lou, Fiber. Polym., 16, 2046 (2015).

    Article  CAS  Google Scholar 

  26. A. A. Septevani, D. A. C. Evans, P. K. Annamalai, and D. J. Martin, Ind. Crop. Prod., 107, 114 (2017).

    Article  CAS  Google Scholar 

  27. N. Gama, L. C. Costa, V. Amaral, A. Ferreira, and A. Barros-Timmons, Compos. Sci. Technol., 138, 24 (2017).

    Article  CAS  Google Scholar 

  28. J. Lee, G.-H. Kim, and C.-S. Ha, J. Appl. Polym. Sci., 123, 2384 (2012).

    Article  CAS  Google Scholar 

  29. T.-T. Li, Y.-C. Chuang, C.-H. Huang, C.-W. Lou, and J.-H. Lin, Fiber. Polym., 16, 691 (2015).

    Article  CAS  Google Scholar 

  30. H. Meng, M. A. Galland, M. Ichchou, O. Bareille, F. X. Xin, and T. J. Lu, Compos. Struct., 182, 1 (2017).

    Article  Google Scholar 

  31. S. Xie, D. Wang, Z. Feng, and S. Yang, Applied Acoustics, 158, 107046 (2020).

    Article  Google Scholar 

  32. S. Villar-Rodil, A. Martínez-Alonso, and J. M. D. Tascón, J. Anal. Appl. Pyrol., 58–59, 105 (2001).

    Article  Google Scholar 

  33. Y. Pan, L. Liu, X. Wang, L. Song, and Y. Hu, Carbohydr. Polym., 201, 1 (2018).

    Article  CAS  Google Scholar 

  34. L. Liu and Z. Wang, Mater. Chem. Phys., 219, 318 (2018).

    Article  CAS  Google Scholar 

  35. W.-H. Rao, H.-X. Xu, Y.-J. Xu, M. Qi, W. Liao, S. Xu, and Y.-Z. Wang, Chem. Eng., 343, 198 (2018).

    Article  CAS  Google Scholar 

  36. Z.-J. Cao, X. Dong, T. Fu, S.-B. Deng, W. Liao, and Y.-Z. Wang, Polym. Degrad. Stabil., 136, 103 (2017).

    Article  CAS  Google Scholar 

  37. R. Yang, B. Wang, X. Han, B. Ma, and J. Li, Polym. Degrad. Stabil., 144, 62 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ministry of Science and Technology of Taiwan (MOST) 107-2221-E-035-049-MY2 and (MOST) 106-2622-E-035-013-CC3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chen-Hung Huang or Jia-Horng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, RR., Huang, CH., Lou, CW. et al. Structural Design and Property Evaluations of Foam-based Composite Materials: Effect of Perforation Depth and Foam Density on the Mechanical, Sound Absorption, and Thermal Properties. Fibers Polym 22, 587–596 (2021). https://doi.org/10.1007/s12221-021-0186-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0186-8

Keywords

Navigation