Skip to main content
Log in

The Improved Mechanical and Thermal Properties of Hemp Fibers Reinforced Polypropylene Composites with Dodecyl Bromide Modification

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Hemp fibers-reinforced polypropylene (HP/PP) composite is strengthened and toughened by chemical treatment in a melt-blending process. The surface characters of the hemp fibers (HFs) treated by alkaline, γ-valerolactone (GVL) and dodecyl bromide (C12) are studied by FTIR. To evaluate the effect of each chemical treatment on HP/PP composites, the thermal stability, crystalline property, microstructure, mechanical property and rheology property have been studied. It is found that the composites with chemical treatment have improved mechanical property and thermal stability. Among those composites, the tensile modulus and maximum decomposition temperature (Tmax) of the dodecyl bromide treated composites are highest, and increase 18 % and 10 °C when compared with raw HFs. It is reveals that dodecyl bromide treatment could improve the mechanical and thermal properties of the composites. A possible reinforcing mechanical that hemp fibers react with dodecyl bromide in the composites have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, Compos. Part B-Eng., 42, 856 (2011).

    Article  Google Scholar 

  2. R. Arnaud, T. Maxime, and J. J. Pierre, Compos. Sci. Technol., 182, 107755 (2019).

    Article  Google Scholar 

  3. X. Shen, J. Jia, and C. Chen, J. Mater. Sci., 49, 3225 (2014).

    Article  CAS  Google Scholar 

  4. M. S. Islam, K. L. Pickering, and N. J. Foreman, Compos. Part A: Appl. S., 41, 596 (2010).

    Article  Google Scholar 

  5. J. F. Pereira, D. P. Ferreira, J. Bessa, J. Matos, F. Cunha, Isabel Araújo, L. F. Silva, E. Pinho, and R. Fangueiro, Polym. Compos., 40, 3472 (2019).

    Article  CAS  Google Scholar 

  6. T. Fulga, Z. Madalina, and T. Carmen-Alice, Polym. Compos., 42, 5 (2020).

    Google Scholar 

  7. M. Ramesh, Prog. Mater. Sci., 102, 109 (2019).

    Article  CAS  Google Scholar 

  8. Q. Hfm de, B. Md, and C. Dkk, J. Comp. Mater., 54, 1245 (2019).

    Google Scholar 

  9. W. Paul, I. Jan, and V. Gnaas, Compos. Sci. Technol., 63, 1259 (2003).

    Article  Google Scholar 

  10. X. Zhang, X. Wu, H. Haryono, and K. Xia, Carbohydr. Polym., 113, 46 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. X. Li, L. G. Tabil, and S. Panigrahi, J. Polym. Environ., 15, 25 (2007).

    Article  Google Scholar 

  12. A. Atiqah, M. Jawaid, M. R. Ishak, and S. M. Sapuan, J. Nat. Fibers, 15, 251 (2017).

    Article  Google Scholar 

  13. S. Bolduc, K. Jung, P. Venkata, and M. Ashokcline, J. Reinf. Plast. Comp., 37, 1322 (2018).

    Article  CAS  Google Scholar 

  14. I. Kellersztein and A. Dotan, Polym. Compos., 37, 2133 (2016).

    Article  CAS  Google Scholar 

  15. Z. Xiong, C. Li, S. Ma, and J. Feng, Carbohydr. Polym., 95, 77 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. L. Fang, L. Chang, W. Guo, Y. Chen, and Z. Wang, Appl. Surf. Sci., 288, 682 (2014).

    Article  CAS  Google Scholar 

  17. S. O. Amiandamhen, M. Meincken, and L. Tyhoda, Fiber. Polym., 21, 677 (2020).

    Article  CAS  Google Scholar 

  18. L. Mei, Y. Ren, and G. Guo, ACS Appl. Mater. Interfaces, 10, 42992 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. A. M. Radzi, S. M. Sapuan, M. Jawaid, and M. R. Mansor, Fiber. Polym., 20, 847 (2019).

    Article  CAS  Google Scholar 

  20. K. E. Okon, F. Lin, Y. Chen, and B. Huang, Carbohydr. Polym., 164, 179 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. L. He, W. Li, D. Chen, and G. Lu, Polym. Compos., 39, 3353 (2018).

    Article  CAS  Google Scholar 

  22. M. L. Troedec, D. Sedan, C. Peyratout, J. P. Bonnet, A. Smith, R. Guinebretiere, V. Gloaguen, and P. Krausz, Compos. Part A-Eng., 39, 514 (2008).

    Article  Google Scholar 

  23. C. Lacoste, R. E. Hage, A. Bergeret, S. Corn, and P. Lacroix, Carbohydr. Polym., 184, 1 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. W. Liu, J. Qiu, T. Chen, and M. Fei, Compos. Sci. Technol., 181, 107709 (2019).

    Article  CAS  Google Scholar 

  25. E. A. Al-Mulla, Y. Jaffar, and M. Wan, J. Mater. Sci., 45, 1942 (2010).

    Article  CAS  Google Scholar 

  26. A. V. Alankar, G. Marc, and A. S. Dawn, Carbohydr. Polym., 136, 1238 (2016).

    Article  Google Scholar 

  27. J. Guo, J. Wang, Y. He, and Q. Zheng, Polymers, 12, 632 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A. Elkhaoulani, F. Z. Arrakhiz, K. Benmoussa, R. Bouhfid, and A. Qaiss, Mater. Des., 49, 203 (2013).

    Article  CAS  Google Scholar 

  29. F. Z. Arrakhiz, M. Elachaby, R. Bouhfid, and S. Vaudreuil, Mater. Des., 35, 318 (2012).

    Article  CAS  Google Scholar 

  30. M. Le Troëdec, A. Rachini, C. Peyratout, S. Rossignol, and E. Max, J. Colloid. Interf. Sci., 356, 303 (2011).

    Article  Google Scholar 

  31. W. Liu, J. Qiu, L. Zhu, and M. Fei, Polymer, 148, 109 (2018).

    Article  CAS  Google Scholar 

  32. W. Liu, T. Xie, and R. Qiu, Cellulose, 23, 2501 (2016).

    Article  CAS  Google Scholar 

  33. L. Xue, G. T. Lope, and P. Satyanarayan, J. Polym. Environ., 15, 25 (2007).

    Article  Google Scholar 

  34. S. Ouajai and R. A. Shanks, Polym. Degrad. Stabil., 89, 327 (2005).

    Article  CAS  Google Scholar 

  35. H. G. Higgixs, C. R. I. Stewart, and K. J. Harringtos, J. Polym. Sci. Polym. Chem., 51, 59 (1961).

    Google Scholar 

  36. J. Guo, X. Chen, and J. Wang, Polymers, 12, 56 (2020).

    Article  CAS  Google Scholar 

  37. R. Sepe, F. Bollino, L. Boccarusso, and F. Caputo, Compos. Part B-Eng., 133, 210 (2018).

    Article  CAS  Google Scholar 

  38. Y. Zhou, Y. He, and H. Wu, Polym. Compos., 41, 3227 (2020).

    Article  CAS  Google Scholar 

  39. H. Wu, D. Xu, and Y. Zhou, Fiber. Polym., 21, 2084 (2020).

    Article  CAS  Google Scholar 

  40. R. Moriana, F. Vilaplana, S. Karlsson, and A. Ribes-Greus, Compos. Part A-Appl. S., 42, 30 (2011).

    Article  Google Scholar 

Download references

Acknowledgement

This work is financially supported by National Natural Science Foundation of China (51602067), Program of Application and Industrialization of Scientificand Technological Achievements of Guizhou (2016–4538), High-level Innovative Talents Training Project of Guizhou (2016/5667), Science and Technology Funds of Baiyun District of Guiyang (2019/22), The Guizhou Provincial Science and Technology Project (Qian Ke He Zhi Cheng[2019]2849), Science and Technology Foundation of Guizhou (2018/1087), Science Corporation Foundation of Guizhou (2019/5635, 2019/2830).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongming Wu or Jianbing Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Xu, D., Zhou, Y. et al. The Improved Mechanical and Thermal Properties of Hemp Fibers Reinforced Polypropylene Composites with Dodecyl Bromide Modification. Fibers Polym 22, 2869–2877 (2021). https://doi.org/10.1007/s12221-021-0127-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0127-6

Keywords

Navigation