Skip to main content
Log in

Investigation of Penetration Behavior of Sandwich Structures with Fiber-metal Laminate Skins and Syntactic Foam Core

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this paper, the penetration behavior of newly designed sandwich structures consist of a 6061-T6 Al alloy sheet and two-layered plain-woven E-glass/epoxy composite laminates and syntactic foam core is investigated experimentally and numerically. Penetration tests are conducted using a single-stage gas-gun and steel conical-ended projectiles to evaluate the accuracy of the finite element model. The 3D finite element code, ABAQUS/Explicit, is used to model the penetration behavior of the sandwich structures. The Johnson-Cook models for material and damage behaviors are used to model the behavior of aluminum sheets. The progressive damage model based on the generalizations of the Hashin failure criteria in a VUMAT subroutine, and the crushable foam model associated with the Reyes fracture criterion in a VUMAT subroutine are employed to simulate the behavior of composite laminates, and syntactic foam, respectively. To validate the finite element model, the penetration behavior of sandwich structures is compared with the experimental results obtained from the experimental study and has shown accurate predictions. The suggested finite element model can predict the residual velocity and perforation energy with 11.2 % and 2.6 % errors, respectively. The effect of foam core thickness, fiber-metal laminate thickness, and impact velocity on the penetration behavior of sandwich structures is studied using the confirmed finite element model. It is observed that the failure of the sandwich structures mainly happens in the impacted area. Also, it is concluded that the effect of the Al thickness on the penetration resistance is more significant than foam and composite thicknesses. Furthermore, as the impact velocity is increased, the penetration time and loss of the velocity are decreased and the perforation energy is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ghalami-Choobar and M. Sadighi, Aerosp. Sci. Technol., 32, 142 (2014).

    Article  Google Scholar 

  2. I. Ivañez, C. Santiuste, E. Barbero, and S. Sanchez-Saez, Compos. Struct., 93, 2392 (2011).

    Article  Google Scholar 

  3. N. Gupta, E. Woldesenbet, and P. Mensah, Compos. Part A-Appl. Sci. Manuf., 35, 103 (2004).

    Article  Google Scholar 

  4. E. C. Hobaica and S. D. Cook, J. Cellular Plastics, 4, 143 (1968).

    Article  CAS  Google Scholar 

  5. F. Grosjean, N. Bouchonneau, D. Choqueuse, and V. Sauvant-Moynot, J. Mater. Sci., 44, 1462 (2009).

    Article  CAS  Google Scholar 

  6. C. Liu, Y. X. Zhang, and L. Ye, Int. J. Impact Eng., 100, 139 (2017).

    Article  Google Scholar 

  7. G. B. Chai and P. Manikandan, Compos. Struct., 107, 363 (2014).

    Article  Google Scholar 

  8. S. Abrate, “Impact Engineering of Composite Structures”, 1st ed., Vol. 526, pp.305–403, Springer-Verlag Wien, New York, 2011.

    Book  Google Scholar 

  9. P. Iaccarino, A. Langella, and G. Caprino, Compos. Sci. Technol., 67, 1784 (2007).

    Article  CAS  Google Scholar 

  10. C.-C. Lin, C.-C. Huang, Y.-L. Chen, C.-W. Lou, C.-M. Lin, C.-H. Hsu, and J.-H. Lin, Fiber. Polym., 9, 761 (2008).

    Article  CAS  Google Scholar 

  11. S. K. García-Castillo, B. L. Buitrago, and E. Barbero, Polym. Compos., 32, 290 (2011).

    Article  Google Scholar 

  12. R. Yahaya, S. M. Sapuan, M. Jawaid, Z. Leman, and E. S. Zainudin, Fiber. Polym., 17, 275 (2016).

    Article  CAS  Google Scholar 

  13. T. Liu, X.-T. Zhang, N.-B. He, and G.-H. Jia, Latin Am. J. Solids and Struct., 14, 1912 (2017).

    Article  Google Scholar 

  14. E. A. Duodu, Global J. Res. Eng., 16, 55 (2016).

    Google Scholar 

  15. M.-M. Xu, G.-Y. Huang, Y.-X. Dong, and S.-S. Feng, Compos. Struct., 188, 450 (2018).

    Article  Google Scholar 

  16. C. Kaboglu, I. Mohagheghian, J. Zhou, Z. Guan, W. Cantwell, S. John, B. R. K. Blackman, A. J. Kinloch, and J. P. Dear, J. Mater. Sci., 53, 4209 (2018).

    Article  CAS  Google Scholar 

  17. P. N. B. Reis, A. M. Amaro, M. A. Neto, and J. S. Cirne, Fiber. Polym., 20, 158 (2019).

    Article  CAS  Google Scholar 

  18. H. Rahmani, R. Eslami-Farsani, and H. Ebrahimnezhad-Khaljiri, Fiber. Polym., 21, 170 (2020).

    Article  CAS  Google Scholar 

  19. W. Hou, F. Zhu, G. Lu, and D.-N. Fang, Int. J. Impact Eng., 37, 1045 (2010).

    Article  Google Scholar 

  20. R. Nasirzadeh and A. R. Sabet, Int. J. Impact Eng., 63, 129 (2014).

    Article  Google Scholar 

  21. S. Feli and S. S. Jafari, J. Braz. Soc. Mech. Sci. Eng., 39, 401 (2017).

    Article  Google Scholar 

  22. E. Rolfe, C. Kaboglu, R. Quinn, P. A. Hooper, H. Arora, and J. P. Dear, J. Dynamic Behavior of Mater., 4, 359 (2018).

    Article  Google Scholar 

  23. R. Huang, S. Ma, M. Zhang, J. Xu, and Z. Wang, Mater. Sci. Eng.: A, 756, 302 (2019).

    Article  CAS  Google Scholar 

  24. T. Wagner, S. Heimbs, F. Franke, U. Burger, and P. Middendorf, Compos. Struct., 204, 142 (2018).

    Article  Google Scholar 

  25. Y. X. Zhang and K. S. Kim, Comput. Mech., 36, 331 (2005).

    Article  Google Scholar 

  26. Y. X. Zhang and C. H. Yang, Compos. Struct., 88, 147 (2009).

    Article  Google Scholar 

  27. Y. X. Zhang and H. S. Zhang, Compos. Struct., 92, 2159 (2010).

    Article  Google Scholar 

  28. S. H. Xin and H. M. Wen, Int. J. Impact Eng., 75, 40 (2015).

    Article  Google Scholar 

  29. D. K. Patel, A. M. Waas, and C.-F. Yen, Compos. Part B: Eng., 152, 102 (2018).

    Article  CAS  Google Scholar 

  30. L. Xu, Y. Huang, C. Zhao, and S. K. Ha, Int. J. Damage Mech., 27, 97 (2018).

    Article  Google Scholar 

  31. S. Zhang, H. Jiang, Y. Ren, Z. Qian, and Z. Lin, Appl. Compos. Mater., 25, 921 (2018).

    Article  Google Scholar 

  32. D. Ma, A. Manes, S. C. Amico, and M. Giglio, Compos. Struct., 216, 187 (2019).

    Article  Google Scholar 

  33. A. G. Hanssen, Y. Girard, L. Olovsson, T. Berstad, and M. Langseth, Int. J. Impact Eng., 32, 1127 (2006).

    Article  Google Scholar 

  34. L. Jing, C. Xi, Z. Wang, and L. Zhao, Mater. Des., 52, 470 (2013).

    Article  CAS  Google Scholar 

  35. A. Rajaneesh, I. Sridhar, and S. Rajendran, Compos. Struct., 94, 1745 (2012).

    Article  Google Scholar 

  36. D. D. Luong, L. Ansuini, and N. Gupta in “Blast Mitigation Strategies in Marine Composite and Sandwich Structures” (S. Gopalakrishnan and Y. Rajapakse Eds.), p.171, Springer Singapore, Singapore, 2018.

  37. B. L. Buitrago, S. K. García-Castillo, and E. Barbero, Materials Letters, 64, 1052 (2010).

    Article  CAS  Google Scholar 

  38. C. Chen and J. Liu in “IOP Conference Series: Earth and Environmental Science”, Vol. 242, IOP Publishing, 2019.

  39. C. Huang, Z. Huang, Y. Qin, J. Ding, and X. Lv, Polym. Compos., 37, 1960 (2016).

    Article  CAS  Google Scholar 

  40. K. Myers, B. Katona, P. Cortes, and I. N. Orbulov, Compos. Part A-Appl. Sci. Manuf., 79, 82 (2015).

    Article  CAS  Google Scholar 

  41. A. Pellegrino, V. Tagarielli, R. Gerlach, and N. Petrinic, Int. J. Impact Eng., 75, 214 (2015).

    Article  Google Scholar 

  42. V. C. Shunmugasamy, N. Gupta, N. Q. Nguyen, and P. G. Coelho, Mater. Sci. Eng.: A, 527, 6166 (2010).

    Article  Google Scholar 

  43. N. Gupta and V. C. Shunmugasamy, Mater. Sci. Eng.: A, 528, 7596 (2011).

    Article  CAS  Google Scholar 

  44. Liorad, “Technical Data Sheet of Epoxy Resin (EPR 1080)”, https://www.liorad.com/images/download/Liorad-Epoxy-EPR1080.pdf (2019).

  45. D. Pinisetty, V. C. Shunmugasamy, and N. Gupta in “Hollow Glass Microspheres for Plastics, Elastomers, and Adhesives Compounds” (S. E. Amos and B. Yalcin Eds.), p.147, William Andrew Publishing, Oxford, 2015.

  46. ASTM, “ASTM Standard C365. Standard Test Method for Flatwise Compressive Properties of Sandwich Cores”, West Conshohocken, PA, USA, 2004.

  47. A. G. Hanssen, O. S. Hopperstad, M. Langseth, and H. Ilstad, Int. J. Mech. Sci., 44, 359 (2002).

    Article  Google Scholar 

  48. Colan, “Technical Data Sheet of Glass Fiber”, http://www.colan.com.au/compositereinforcement/resources/fibre-information/fibre-comparison-charts (2019).

  49. H. W. Eickner and W. Schowalter, Parts I and II, US Dept. of Agriculture, Forest Products Laboratory, Report 1813, May 1950.

  50. A. Reyes, O. Hopperstad, T. Berstad, and M. Langseth, “8th International LS-DYNA Users Conference, Detroit, MI, 2004.

  51. V. S. Deshpande and N. A. Fleck, J. Mech. Phys. Solids, 48, 1253 (2000).

    Article  CAS  Google Scholar 

  52. ABAQUS, “ABAQUS Analysis User Manual”, 2014.

  53. A. Reyes, O. S. Hopperstad, T. Berstad, A. G. Hanssen, and M. Langseth, Eur. J. Mech. — A/Solids, 22, 815 (2003).

    Article  Google Scholar 

  54. ASTM, “ASTM Standard C271. Standard Test Method for Density of Sandwich Core Materials”, West Conshohocken, PA, USA, 2004.

  55. P. Jadhav, P. Raju Mantena, and R. F. Gibson, Compos. Part B: Eng., 37, 191 (2005).

    Article  Google Scholar 

  56. P. F. Liu, B. B. Liao, L. Y. Jia, and X. Q. Peng, Compos. Struct., 149, 408 (2016).

    Article  Google Scholar 

  57. T. P. Vo, Z. W. Guan, W. J. Cantwell, and G. K. Schleyer, Compos. Struct., 94, 954 (2012).

    Article  Google Scholar 

  58. W. Guo, P. Xue, and J. Yang, Appl. Math. Mech., 34, 1145 (2013).

    Article  Google Scholar 

  59. E. Sitnikova, Z. W. Guan, G. K. Schleyer, and W. J. Cantwell, Int. J. Solids Struct., 51, 3135 (2014).

    Article  CAS  Google Scholar 

  60. Z. Hashin, J. Appl. Mech., 47, 329 (1980).

    Article  Google Scholar 

  61. C. Zhang, N. Li, W. Wang, W. K. Binienda, and H. Fang, Compos. Struct., 125, 104 (2015).

    Article  Google Scholar 

  62. C.-F. Yen, “7th International LS-DYNA Users Conference”, DYNAlook, 6, pp.15–26. Dearborn, MI, 2002.

  63. N. K. Naik, Y. Chandra Sekher, and S. Meduri, Compos. Sci. Technol., 60, 731 (2000).

    Article  Google Scholar 

  64. G. R. Johnson and W. H. Cook, Eng. Fract. Mech., 21, 31 (1985).

    Article  Google Scholar 

  65. A. Alizadeh, Ph.D. Dissertation, Northeastern University, Massachusetts, 2016.

  66. E. Rizzi, E. Papa, and A. Corigliano, Int. J. Solids and Struct., 37, 5773 (2000).

    Article  Google Scholar 

  67. L. E. Schwer and C. Windsor, “7th European LS-DYNA Conference”, DYNAmore GmbH, Salzburg, Austria, 14–15 May, p.28, 2009.

Download references

Acknowledgments

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Atrian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, E., Fesharaki, J.J., Atrian, A. et al. Investigation of Penetration Behavior of Sandwich Structures with Fiber-metal Laminate Skins and Syntactic Foam Core. Fibers Polym 22, 2846–2860 (2021). https://doi.org/10.1007/s12221-021-0108-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0108-9

Keywords

Navigation