Skip to main content
Log in

A Novel Hydrophilic PVA Fiber Reinforced Thermoplastic Polyurethane Materials for Water-lubricated Stern Bearing

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

As an important part of the marine propulsion system, the water-lubricated stern bearing has a major impact on ship safety. In order to improve the reliability of water-lubricated stern bearing under actual working conditions, hydrophilic PVA fibers were added to a typical water-lubricated bearing material, the thermoplastic polyurethane (TPU), to fabricate TPU/PVA fiber composites. The sliding friction-wear test, under water-lubricated conditions, of the TPU composites/QSn7-0.2 friction pairs were analyzed using a designed testing apparatus. The friction coefficients, worn surfaces and the wear losses from the test samples were examined. The results revealed that the addition of appropriate hydrophilic PVA fibers can effectively improve the tribological properties of TPU materials. The hydrophilic PVA fibers not only improved the affinity and the material surface storage ability to water medium but also absorbed water and formed swelling convex texture under water environment, thereby enhanced the hydrodynamic lubrication effect. When the mass fraction of PVA fiber reached 15 % or more, the debris gathered under the action of loading and fiber connection, formed solid lubrication film. Thus, it effectively improved the self-lubrication performance of the material. But that is not conducive to the tribological performances of the composites when the mass fraction of PVA fiber reached 30 %. Generally, the materials with 15 % to 20 % PVA fiber content showed better tribological properties under the experimental conditions. This work provides a new idea for the research of new water-lubricated bearing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Southern and A. Thomas, Rubber Chem. Technol., 52, 1008 (1979).

    Article  Google Scholar 

  2. H. L. Qin, X. C. Zhou, X. Z. Zhao, J. T. Xing, and Z. M. Yan, Wear, 328–329, 257 (2015).

    Article  CAS  Google Scholar 

  3. W. Litwin, Tribol. Int., 103, 352 (2016).

    Article  Google Scholar 

  4. J. Y. Gong, Y. Jin, Z. L. Liu, H. Jiang, and M. H. Xiao, Tribol. Int., 129, 390 (2019).

    Article  Google Scholar 

  5. C. Q. Yuan, Z. W. Guo, W. Tao, C. L. Dong, and X. Q. Bai, Wear, 384–385, 185 (2017).

    Article  CAS  Google Scholar 

  6. S. L. Jiang, Z. W. Guo, and C. Q. Yuan, J. Appl. Polym. Sci., 135, 46305 (2018).

    Article  CAS  Google Scholar 

  7. J. Bae and K. Chung, Polym. Test., 63, 110 (2017).

    Article  CAS  Google Scholar 

  8. S. L. Jiang, C. Q. Yuan, Z. W. Guo, and X. Q. Bai, Tribol. Int., 136, 276 (2019).

    Article  CAS  Google Scholar 

  9. B. Golaz, S. Touani, N. Diomidis, V. Michaud, and S. Mischler, J. Appl. Polym. Sci., 125, 3745 (2012).

    Article  CAS  Google Scholar 

  10. H. R. Pant, H. J. Kim, M. K. Joshi, B. Pant, C. H. Park, J. I. Kim, K. S. Hui, and C. S. Kim, J. Hazard Mater., 264, 25 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. G. Sui, W. H. Zhong, X. Ren, X. Q. Wang, and X. P. Yang, Mater. Chem. Phys., 115, 404 (2009).

    Article  CAS  Google Scholar 

  12. A. Golchin, A. Villain, and N. Emami, Tribol. Int., 110, 195 (2017).

    Article  CAS  Google Scholar 

  13. M. Palabiyik and S. Bahadur, Wear, 253, 369 (2002).

    Article  CAS  Google Scholar 

  14. Y. Z. Wang, Z. W. Yin, H. L. Li, G. Y. Gao, and X. L. Zhang, Wear, 380–381, 42 (2017).

    Article  CAS  Google Scholar 

  15. Z. W. Guo, C. Q. Yuan, A. X. Liu, and J. Song, Wear, 376–377, 911 (2017).

    Article  CAS  Google Scholar 

  16. Z. R. Yang, Z. W. Guo, and C. Q. Yuan, Wear, 426–427, 853 (2019).

    Article  CAS  Google Scholar 

  17. Z. M. Wu, Z. W. Guo, and C. Q. Yuan, Wear, 426–427, 1008 (2019).

    Article  CAS  Google Scholar 

  18. H. Pihtili and N. Tosun, Wear, 252, 979 (2002).

    Article  CAS  Google Scholar 

  19. N. M. S. El-Tayeb, B. F. Yousif, and T. C. Yap, Wear, 261, 443 (2006).

    Article  CAS  Google Scholar 

  20. S. A. R. Hashmi, U. K. Dwivedi, and N. Chand, Wear, 262, 1426 (2007).

    Article  CAS  Google Scholar 

  21. C. E. Correa, S. Betancourt, A. Vazquez, and P. Ganan, Tribol. Int., 109, 447 (2017).

    Article  CAS  Google Scholar 

  22. J. Bijwe, R. Rattan, and M. Fahim, Tribol. Int., 40, 844 (2007).

    Article  CAS  Google Scholar 

  23. R. Rattan and J. Bijwe, Tribol. Lett., 22, 105 (2006).

    Article  CAS  Google Scholar 

  24. P. Kumar and V. K. Srivastava, Ceram. Int., 44, 5365 (2018).

    Article  CAS  Google Scholar 

  25. D. C. Park, S. S. Kim, B. C. Kim, S. M. Lee, and D. G. Lee, Compos. Struct., 74, 89 (2006).

    Article  Google Scholar 

  26. Z. Z. Zhang, F. H. Su, K. Wang, W. Jiang, X. H. Men, and W. M. Liu, Mater. Sci. Eng. A, 404, 251 (2005).

    Article  CAS  Google Scholar 

  27. S. Tiwari and J. Bijwe, Proc. Technol., 14, 505 (2014).

    Article  Google Scholar 

  28. X. H. Zhou, Y. S. Sun, and W. S. Wang, J. Mater. Proc. Technol., 209, 4553 (2009).

    Article  CAS  Google Scholar 

  29. M. Qiu, Y. W. Miao, Y. C. Li, and J. J. Liu, Tribol. Int., 87, 132 (2015).

    Article  CAS  Google Scholar 

  30. H. L. Li, Z. W. Yin, D. Jiang, Y. J. Huo, and Y. Q. Cui, Tribol. Int., 80, 172 (2014).

    Article  CAS  Google Scholar 

  31. D. Hu, Z. W. Guo, X. Xie, and C. Q. Yuan, Tribol. Int., 134, 341 (2019).

    Article  CAS  Google Scholar 

  32. A. Dadouche and M. J. Conlon, Tribol. Int., 93, 377 (2016).

    Article  CAS  Google Scholar 

  33. W. Litwin, Tribol. Int., 82, 153 (2015).

    Article  CAS  Google Scholar 

  34. T. Chang, Z. W. Guo, and C. Q. Yuan, Tribol. Int., 129, 29 (2019).

    Article  CAS  Google Scholar 

  35. Z. W. Guo, X. Xie, C. Q. Yuan, and X. Q. Bai, Wear, 426–427, 1327 (2019).

    Article  CAS  Google Scholar 

  36. D. B. Hamilton, J. A. Walowit, and C. M. Allen, J. Basic Eng., 88, 177 (1966).

    Article  Google Scholar 

  37. J. X. Lin, Y. Song, Z. H. Xie, Y. C. Guo, B. Yuan, J. J. Zeng, and X. Wei, J. Build. Eng., 29, 101097 (2020).

    Article  Google Scholar 

  38. C. H. Wang, T. Y. Lin, B. X. Long, and C. Lu, Acta Materiae Compositae Sinica, 34, 1902 (2017).

    Google Scholar 

  39. A. Almajid, K. Friedrich, J. Floeck, and T. Burkhart, Appl. Compos. Mater., 18, 211 (2011).

    Article  CAS  Google Scholar 

  40. E. I. Akpan, B. Wetzel, and K. Friedrich, Tribol. Int., 120, 381 (2018).

    Article  CAS  Google Scholar 

  41. Department of Defense, MIL-DTL-17901C(SH). Bearing Components, Bonded Synthetic Rubber, Water Lubricated, p.8, 2005.

  42. Shipping LRO. Rules and Regulations for the Classification of Ships. Lloyd’s Register, 2013.

  43. ISO 25178-2: Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters, 2012.

  44. G. M. Krolczyk, R. W. Maruda, J. B. Krolczyk, P. Nieslony, S. Wojciechowski, and S. Legutko, Measurement, 121, 225 (2018).

    Article  Google Scholar 

  45. G. M. Krolczyk, J. B. Krolczyk, R. W. Maruda, S. Legutko, and M. Tomaszewski, Measurement, 88, 176 (2016).

    Article  Google Scholar 

  46. N. K. Myshkin, M. I. Kovets, and A. V. Kovalev, Tribol. Int., 38, 910 (2005).

    Article  CAS  Google Scholar 

  47. X. Liang, Z. Guo, T. Jun, and C. Yuan, Polym. Test., doi: https://doi.org/10.1016/j.polymertesting.2019.106153 (2019).

  48. J. Li and X. H. Cheng, J. Appl. Polym. Sci., 107, 1147 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China [51509195].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwei Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Guo, Z., Jun, T. et al. A Novel Hydrophilic PVA Fiber Reinforced Thermoplastic Polyurethane Materials for Water-lubricated Stern Bearing. Fibers Polym 22, 171–183 (2021). https://doi.org/10.1007/s12221-021-0013-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0013-2

Keywords

Navigation