Skip to main content
Log in

Preparation and Characterization of Poly(lactic acid) Micro- and Nanofibers Fabricated by Centrifugal Spinning

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this paper, poly(lactic acid) (PLA) micro- and nanofibers were successfully prepared by centrifugal spinning which is a more simple and effective approach to produce micro/nanofibers. The morphology of fibers was investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), while their thermal properties by differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA). The results showed that the diameter of PLA fibers increased significantly with increasing solution concentration and decreased slightly with increasing collection distance. It can be controlled below 500 nm at the optimal process parameters which were found to be spinning solution concentration of 6 %, spinneret diameter of 0.11 mm, rotational speed of 5500 rpm and collecting distance of 15 cm. Although the crystallinity of the PLA fibers was weaker than that of the PLA pellets due to the insufficient adjustment of the molecular chain in rapid solvent evaporation and short stretching time, it can be improved by increasing the rotational speed from 4500 to 7000 rpm. The glass transition temperature (Tg) and melting temperature (Tm) of the fibers were nearly keeping constant compared to the PLA pellets. Its good degradability was demonstrated by the loss of fibers structure completely within 5 hours of immersion in NaOH at pH 13.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Polat, E. S. Pampal, E. Stojanovska, R. Simsek, A. Hassanin, A. Kilic, and S. Yilmaz, J. Appl. Polym. Sci., 133, 43025 (2016).

    Article  Google Scholar 

  2. E. S. Pampal, E. Stojanovska, B. Simon, and A. Kilic, J. Power Sources, 300, 199 (2015).

    Article  CAS  Google Scholar 

  3. S. K. Bhullar, D. Rana, H. Lekesiz, A. C. Bedeloglu, J. Ko, Y. Cho, Z. Aytac, T. Uyar, and M. Jun, Mat. Sci. Eng. C-Mater., 81, 334 (2017).

    Article  CAS  Google Scholar 

  4. X. Xing, Y. Wang, and B. Li, Opt. Express, 16, 10815 (2008).

    Article  CAS  Google Scholar 

  5. C. H. Wu, J. F. Shr, C. F. Wu, and C. T. Hsieh, Physica E, 40, 814 (2008).

    Article  CAS  Google Scholar 

  6. P. Xavier, S. Jain, V. Srinivas T, K. Chatterjee, and S. Bose, RSC Adv., 6, 10865 (2016).

    Article  CAS  Google Scholar 

  7. M. O. Guler, L. Hsu, S. Soukasene, D. A. Harrington, J. F. Hulvat, and S. I. Stupp, Biomacromolecules, 7, 1855 (2006).

    Article  CAS  Google Scholar 

  8. S. B. Yang, H. J. Lee, Y. Sabina, J. W. Kim, and J. H. Yeum, Colloid Surfaces A, 497, 265 (2016).

    Article  CAS  Google Scholar 

  9. A. M. Ahmed, S. A. Eifan, E. N. H. Mohamed, and S. S. Aldeyab, J. Agr. Sci., 59, 75 (2014).

    Article  Google Scholar 

  10. L. Li, X. Zhang, Y. Qu, W. Zheng, W. J. Liu, and X. B. Zhang, Mater. Rev., 33, 89 (2019).

    Google Scholar 

  11. M. R. Badrossamay, H. A. McIlwee, J. A. Goss, and K. K. Parker, Nano Lett., 10, 2257 (2010).

    Article  CAS  Google Scholar 

  12. R. T. Weitz, L. Harnau, S. Rauschenbach, M. Burghard, and K. Kern, Nano Lett., 8, 1187 (2008).

    Article  CAS  Google Scholar 

  13. S. Padron, R. Patlan, J. Gutierrez, N. Santos, T. Eubanks, and K. Lozano, J. Appl. Polym. Sci., 125, 3610 (2012).

    Article  CAS  Google Scholar 

  14. L. Xia, J. G. Jing, W. Xu, C. K. Ding, and B. W. Cheng, Mater. Des., 96, 439 (2016).

    Article  CAS  Google Scholar 

  15. M. Huttunen and M. Kellomaki, J. Tissue Eng. Regen. M., 5, e239 (2011).

    Article  CAS  Google Scholar 

  16. H. Zhao, X. Min, X. Wu, H. Wang, J. Liu, Z. Zhang, Z. Huang, Y. G. Liu, and M. Fang, Chem. Phys. Lett., 684, 14 (2017).

    Article  CAS  Google Scholar 

  17. R. Patlan, J. Mejias, Z. McEachin, A. Salinas, and K. Lozano, Fiber. Polym., 19, 1271 (2018).

    Article  CAS  Google Scholar 

  18. W. Xu, L. Xia, J. G. Ju, P. Xi, B. W. Cheng, and Y. X. Liang, J Sol-Gel Sci. Technol., 78, 353 (2016).

    Article  CAS  Google Scholar 

  19. H. Xu, H. Chen, X. Li, C. Liu, and B. Yang, J. Polym. Sci. Pol. Phys., 52, 1547 (2014).

    Article  CAS  Google Scholar 

  20. M. A. Hammami, M. Krifa, and O. Harzallah, J. Text. Inst., 105, 637 (2014).

    Article  CAS  Google Scholar 

  21. E. T. H. Vink, K. R. Rabago, D. A. Glassner, and P. R. Gruber, Polym. Degrad. Stabil., 80, 403 (2003).

    Article  CAS  Google Scholar 

  22. S. F. Gomaa, T. M. Madkour, S. Moghannem, and I. M. EI-Sherbiny, Int. J. Biol. Macromol., 105, 1148 (2017).

    Article  CAS  Google Scholar 

  23. M. K. Pierchala, M. Makaremi, H. L. Tan, J. Pushpamalar, S. Muniyandy, A. Solouk, S. M. Lee, and P. Pasbakhsh, Appl. Clay Sci., 160, 95 (2018).

    Article  CAS  Google Scholar 

  24. A. C. Chinyerenwa, H. Wang, Q. Zhang, Y. Zhuang, K. H. Munna, C. Ying, H. Yang, and W. Xu, Polymer, 141, 62 (2018).

    Article  CAS  Google Scholar 

  25. H. Zhou, Y. Tang, Z. Wang, P. Zhang, and Q. Zhu, RSC Adv., 8, 5166 (2018).

    Article  CAS  Google Scholar 

  26. Y. Lu, Y. Li, S. Zhang, G. Xu, K. Fu, H. Lee, and X. Zhang, Eur. Polym. J., 49, 3834 (2013).

    Article  CAS  Google Scholar 

  27. Y. Fang, A. D. Dulaney, J. Gadley, J. M. Maia, and C. J. Ellison, Polymer, 73, 42 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Tianjin Natural Science Foundation (18JCQNJC71900) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, L., Lu, Ll. & Liang, Yx. Preparation and Characterization of Poly(lactic acid) Micro- and Nanofibers Fabricated by Centrifugal Spinning. Fibers Polym 21, 1422–1429 (2020). https://doi.org/10.1007/s12221-020-9993-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9993-6

Keywords

Navigation