Skip to main content
Log in

Characterization of PEDOT:PSS Impregnated Polyurethane Nanoweb with Post-Thermal Treatment for E-Textiles

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The aim of this study is to (1) find out the optimum post-thermal treatment temperature by observing the electrical resistance changes of the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS) impregnated specimens, (2) examine the surface changes of the PEDOT:PSS impregnated specimens with post-thermal treatment temperature, (3) analyze the effects of the post-thermal treatment on the structural change of the PEDOT:PSS impregnated specimens as the thermal treatment temperature increased. PEDOT:PSS solution (aqueous dispersion, 1.3 wt%) was used in this study to impart the electrical conductivity to the polyurethane (PU) nanoweb. Post-thermal treatments carried out on PU nanoweb in the temperature range of 60-120°C. The results showed that the linear, sheet and specific resistance of the specimens decreased as the post-thermal treatment temperature increased. The highest electrical conductivity was 5.56 S/cm (P120) and the lowest was 0.53 S/cm (UT). FE-SEM images show that PU nanoweb was uniformly and successfully impregnated with PEDOT:PSS. According to the result of raman spectra indicates an effect of the post-thermal treatments on the structural change of the PEDOT chains, which suggests an electrical resistance change of specimens. It was found that the optimum post-thermal treatment conditions are 120°C and 15 minutes with impregnating methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Cho, H. W. Jeong, K. H. Song, Y. A. Kwon, and S. J. Yoo, “New Apparel Materials”, Revised Edition, Gyomoon, Seoul, 2018.

    Google Scholar 

  2. E. Jang, I. Kim, E. Lee, and G. Cho, Sci. Emot. Sensibil., 20, 89 (2017).

    Article  Google Scholar 

  3. G. Cho, “New Development in Textiles”, Revised Edition, Sigmapress, Seoul, 2006.

    Google Scholar 

  4. G. Cho, Y. J. Yang, and M. S. Sung, Fashion Text. Res. J., 10, 1 (2008).

    Google Scholar 

  5. S. Seyedin, J. M. Razal, P. C. Innis, A. Jeiranikhameneh, S. Beirne, and G G. Wallace, ACS Appl. Mater. Interfaces, 7, 21150 (2015).

    Article  CAS  Google Scholar 

  6. J. P. Wang, P. Xue, and X. M. Tao, Mater. Sci. Eng. A., 528, 2863 (2011).

    Article  Google Scholar 

  7. E. Jang, H. Liu, and G. Cho, Tex. Res. J., doi:10.1177/ 0040517519844604 (2019).

    Google Scholar 

  8. E. Lee and G. Cho, Text. Res. J., doi: 10.1177/ 0040517518805382 (2019).

    Google Scholar 

  9. E. Lee and G. Cho, Smart Mater. Struct., doi:10.1177/0040517518805382 (2019).

    Google Scholar 

  10. I. Kim, E. G. Lee, E. Jang, and G. Cho, Tex. Res. J., doi:10.1177/0040517517697647 (2017).

    Google Scholar 

  11. I. Kim, E. G. Lee, E. Jang, S. J. Lee, J. M. Myoung, and G. Cho, “The Proceedings of the Fiber Society 2016 Fall Conference”, 2016.

    Google Scholar 

  12. Y. Ding, W. Xu, W. Wang, H. Fong, and Z. Zhu, ACS Appl. Mater. Interfaces, 9, 30014 (2017).

    Article  CAS  Google Scholar 

  13. S. W. Park, T. H. Oh, J. S. Hwang, and Y J. Lee, Fiber. Polym., 17, 1171 (2016).

    Article  CAS  Google Scholar 

  14. X. Wang, M. Q. Ge, and G Y. Feng, Fiber. Polym., 16, 2578 (2015).

    Article  CAS  Google Scholar 

  15. M. Åkerfeldt, M. Strâât, and P. Walkenström, Tex. Res. J., 83, 618 (2013).

    Article  Google Scholar 

  16. J. D. Ryan, D. A. Mengistie, R. Gabrielsson, A. Lund, and C. Müller, ACS Appl. Mater. Interfaces, 9, 9045 (2017).

    Article  CAS  Google Scholar 

  17. M. D. Irwin, D. A. Roberson, R. I. Olivas, R. B. Wicker, and E. MacDonald, Fiber. Polym., 12, 904 (2011).

    Article  CAS  Google Scholar 

  18. J. Ouyang, C. W. Chu, F. C. Chen, Q. Xu, and Y. Yang, Adv. Funct., 15, 203 (2005).

    Article  CAS  Google Scholar 

  19. I. Cruz-Cruz, M. Reyes-Reyes, M. A. Aguilar-Frutis, A. G. Rodriguez, and R. Löpez-Sandoval, Synth. Met., 160, 1501 (2010).

    Article  CAS  Google Scholar 

  20. C. Sriprachuabwong, C. Karuwan, A. Wisitsorrat, D. Phokharatkul, T. Lomas, P. Sritongkham, and A. Tuantranont, J. Mater. Chem., 22, 5478 (2012).

    Article  CAS  Google Scholar 

  21. Y. Ding, M. A. hivernale, and G A. Sotzing, ACS Appl. Mater. Interfaces, 2, 1588 (2010).

    Article  CAS  Google Scholar 

  22. T. Takano, H. Masunaga, A. Fujiwara, H. Okuzaki, and T. Sasaki, Macromolecules, 45, 3859 (2012).

    Article  CAS  Google Scholar 

  23. J. Zhou, D. H. Anjum, L. Chen, X. Xu, I. A. Ventura, L. Jiang, and G. Lubineau, J. Mater. Chem. C., 2, 9903 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. NRF-2019R1F1A1060955) and the Brain Korea 21 Plus Project of Dept. of Clothing and Textiles, Yonsei University in 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilsoo Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, Hs., Jang, E. & Cho, G. Characterization of PEDOT:PSS Impregnated Polyurethane Nanoweb with Post-Thermal Treatment for E-Textiles. Fibers Polym 21, 965–969 (2020). https://doi.org/10.1007/s12221-020-9986-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9986-5

Keywords

Navigation