Skip to main content
Log in

Polyvinylidene Fluoride Electrospun Fibers Loaded TiO2 for Photocatalytic Degradation and Oil/Water Separation

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, electrospun polyvinylidene fluoride (PVDF)-based nanofibrous membranes embedding TiO2 were prepared and used for photocatalytic degradation and oil/water separation. The nanofibrous membranes were characterized by scanning electron microscopy (SEM), transmission electronic microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) spectroscopy, thermal performance analysis, and oil/water separation analysis. And the degradation of rhodamine B dye was also investigated. Results showed that the fiber diameter and thermal stability of the membranes decreased with the increasing of TiO2. Meanwhile, the fiber surface roughness and specific surface area increased. The analysis of TEM, XRD and FTIR indicated that TiO2 existed in the PVDF membranes. When the TiO2 content was 12 %, the fiber diameter of the membranes was about 110 nm, and the photocatalytic degradation of rhodamine B dye efficiency was up to 97 %. The reaction rate constant was 0.02057 min−1. At 0.01 MPa vacuum, oil separated from water effectively, which proves that separation can be easily conducted with a low energy cost. Thus, the prepared membranes have a very high application prospect in the purification of reclaimed water and separation of oil and water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. C. Chen and Z. K. Xu, Sci. Rep-UK, 3, 2776 (2013).

    Google Scholar 

  2. H. Huang, Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu, and X. Peng, Nat. Commun., 4, 2979 (2013).

    PubMed  Google Scholar 

  3. X. Lin, Q. Yang, L. Ding, and B. Su, ACS Nano, 9, 11266 (2015).

    CAS  PubMed  Google Scholar 

  4. P. Dong, Y. Wang, L. Guo, B. Liu, S. Xin, J. Zhang, Y. Shi, W. Zeng, and S. Yin, Nanoscale, 4, 4641 (2012).

    CAS  PubMed  Google Scholar 

  5. Y. Liang, H. Wang, H. S. Casalongue, Z. Chen, and H. Dai, Nano Res., 3, 701 (2010).

    CAS  Google Scholar 

  6. T. Liu, S. Sun, L. Zhou, P. Li, Z. Su, and G. Wei, Appl. Sci., 9, 293 (2019).

    CAS  Google Scholar 

  7. B. M. Kale, J. Wiener, J. Militky, S. Rwawiire, R. Mishra, K. I. Jacob, and Y. Wang, Carbohydr. Polym., 150, 107 (2016).

    CAS  PubMed  Google Scholar 

  8. M. M. Ghobashy, Ultrason. Sonochem, 37, 529 (2017).

    CAS  PubMed  Google Scholar 

  9. G. Doganli, B. Yuzer, I. Aydin, T. Gultekin, A. H. Con, H. Selcuk, and S. Palamutcu, J. Coat. Technol. Res., 13, 257 (2016).

    CAS  Google Scholar 

  10. S. Sun, T. Deng, H. Ding, Y. Chen, and W. Chen, Nanomaterials, 7, 367 (2017).

    PubMed Central  Google Scholar 

  11. A. Folli, U. H. Jakobsen, G. L. Guerrini, and D. E. Macphee, J. Adv. Oxid. Technol., 12, 126 (2016).

    Google Scholar 

  12. T. Shirasawa, W. Voegeli, E. Arakawa, T. Takahashi, and T. Matsushita, J. Phys. Chem. C, 120 (2016).

  13. A. Y. Shan, T. I. M. Ghazi, and S. A. Rashid, Appl. Catal. A-Gen, 389, 1 (2010).

    CAS  Google Scholar 

  14. G. Zhang, J. Yi, J. Shim, J. Lee, and W. Choi, Appl. Catal. B-Environ., 102, 132 (2011).

    CAS  Google Scholar 

  15. S. Carbonaro, M. N. Sugihara, and T. J. Strathmann, Appl. Catal B-Environ., 129, 1 (2013).

    CAS  Google Scholar 

  16. S. Singh, H. Mahalingam, and P. K. Singh, Appl. Catal. A-Gen, 462–463, 178 (2013).

    Google Scholar 

  17. T. He, Z. Zhou, W. Xu, F. Ren, H. Ma, and J. Wang, Polymer, 50, 3031 (2009).

    CAS  Google Scholar 

  18. S. Jo and Y. Kim, Korean J. Chem. Eng., 33, 3203 (2016).

    CAS  Google Scholar 

  19. J. Li, L. Yan, W. Hu, D. Li, F. Zha, and Z. Lei, Colloid Surface A, 489, 441 (2016).

    CAS  Google Scholar 

  20. L. Li, Z. Liu, Q. Zhang, C. Meng, T. Zhang, and J. Zhai, J. Mater. Chem. A., 3, 1279 (2015).

    CAS  Google Scholar 

  21. S. Singh, H. Mahalingam, and P. K. Singh, Appl. Catal A-Gen, 462–463, 178 (2013).

    Google Scholar 

  22. N. S. Mohamed and A. K. Arof, J. Power. Sources, 132, 229 (2004).

    CAS  Google Scholar 

  23. C. Chiang, Y. J. Shen, M. J. Reddy, and P. P. Chu, J. Power. Sources, 123, 222 (2003).

    CAS  Google Scholar 

  24. X. Yue, Z. Li, T. Zhang, D. Yang, and F. Qiu, Chem. Eng. J., 364, 292 (2019).

    CAS  Google Scholar 

  25. T. Liu, Y. Guo, Z. Zhang, Z. Miao, X. Zhang, and Z. Su, Sensor. Actuat. B-Chem, 286, 370 (2019).

    CAS  Google Scholar 

  26. M. Zhang, X. Zhao, G. Zhang, G. Wei, and Z. Su, J. Mater. Chem. B, 5, 1699 (2017).

    CAS  PubMed  Google Scholar 

  27. N. Hoogesteijn Von Reitzenstein, X. Bi, Y. Yang, K. Hristovski, and P. Westerhoff, J. Appl. Polym. Sci., 133 (2016).

  28. S. Zhang, Z. Jia, T. Liu, G. Wei, and Z. Su, Sensors, 19, 3977 (2019).

    CAS  Google Scholar 

  29. R. M. Ahmed, Fiber and Integrated Optics, 36, 78 (2017).

    CAS  Google Scholar 

  30. T. He, Z. Zhou, W. Xu, F. Ren, H. Ma, and J. Wang, Polymer, 50, 3031 (2009).

    CAS  Google Scholar 

  31. S. Ramasundaram, A. Son, M. G. Seid, S. Shim, S. H. Lee, Y. C. Chung, C. Lee, J. Lee, and S. W. Hong, J. Hazard. Mater, 285, 267 (2015).

    CAS  PubMed  Google Scholar 

  32. A. Salimi and A. A. Yousefi, Polym. Test., 22, 699 (2003).

    CAS  Google Scholar 

  33. Q. Jiang, X. Pei, L. Wu, T. Li, and J. Lin, Adv. Polym. Tech., 37, 2971 (2018).

    CAS  Google Scholar 

  34. S. W. Choi, S. M. Jo, W. S. Lee, and Y. R. Kim, Adv. Mater., 15, 2027 (2003).

    CAS  Google Scholar 

  35. A. Yar, B. Haspulat, T. Üstün, V. Eskizeybek, A. Avc, H. Kam, and S. Achour, RSC Adv., 7, 2986 (2017).

    Google Scholar 

  36. P. Dong, Y. Wang, L. Guo, B. Liu, S. Xin, J. Zhang, Y. Shi, W. Zeng, and S. Yin, Nanoscale, 4, 4641 (2012).

    CAS  PubMed  Google Scholar 

  37. Z. Mokhtari-Shourijeh, L. Montazerghaem, and M. E. Olya, J. Polym. Environ., 26, 3550 (2018).

    CAS  Google Scholar 

  38. Y. Kim, C. H. Ahn, M. B. Lee, and M. Choi, Mater. Chem. Phys, 127, 137 (2011).

    CAS  Google Scholar 

  39. H. Bai, X. Wang, Y. Zhou, and L. Zhang, Pro. Nat. Sci-Mater, 22, 250 (2012).

    Google Scholar 

  40. A. Rahimpour, S. S. Madaeni, S. Zereshki, and Y. Mansourpanah, Appl. Surf. Sci., 255, 7455 (2009).

    CAS  Google Scholar 

  41. S. Gu, G. He, X. Wu, Z. Hu, L. Wang, G. Xiao, and L. Peng, J. Appl. Polym. Sci., 116, 852 (2009).

    Google Scholar 

  42. Z. Mokhtari-Shourijeh, L. Montazerghaem, and M. E. Olya, J. Polym. Environ., 26, 3550 (2018).

    CAS  Google Scholar 

  43. Y. Kim, C. H. Ahn, M. B. Lee, and M. Choi, Mater. Chem. Phys., 127, 137 (2011).

    CAS  Google Scholar 

  44. S. M. Seyed Shahabadi and J. A. Brant, Sep. Purif. Technol., 210, 587 (2019).

    CAS  Google Scholar 

  45. R. M. Ahmed, Fiber Integrated Opt., 36, 78 (2017).

    CAS  Google Scholar 

  46. Y. Liang, H. Wang, H. Sanchez Casalongue, Z. Chen, and H. Dai, Nano Res., 3, 701 (2010).

    CAS  Google Scholar 

  47. C. Lee, H. Javed, D. Zhang, J. Kim, P. Westerhoff, Q. Li, and P. J. J. Alvarez, Environ. Sci. Technol., 52, 4285 (2018).

    CAS  PubMed  Google Scholar 

  48. B. Krishnakumar, S. Kumar, J. M. Gil, V. Pandiyan, A. Aguiar, and A. J. F. N. Sobral, J. Mol. Struct., 1153, 346 (2018).

    CAS  Google Scholar 

  49. L. Li, Z. Liu, Q. Zhang, C. Meng, T. Zhang, and J. Zhai, J. Mater. Chem. A., 3, 1279 (2015).

    CAS  Google Scholar 

  50. X. Yu, D. Lin, P. Li, and Z. Su, Sol. Energ. Mat. Sol. C., 172, 252 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Open Project Program of Fujian Key Laboratory of Novel Functional Fibers and Materials (Minjiang University), China (No. FKLTFM 1722), National Natural Science Foundation of China [grant numbers 51503145, 21806121, 11702187]; the Natural Science Foundation of Tianjin City [grant numbers 18JCQNJC03400, 17JCQNJC08000]; the Natural Science Foundation of Fujian Province [grant numbers 2018J01504, 2018J01505]; the Opening Project of Green Dyeing and Finishing Engineering Research Center of Fujian University (2017001A, 2017001B, 2017002B and 2017004B), the Program for Innovative Research Team in University of Tianjin [grant number TD13-5043].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Tao Ren, Ching-Wen Lou or Jia-Horng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, F., Ren, HT., Huang, SY. et al. Polyvinylidene Fluoride Electrospun Fibers Loaded TiO2 for Photocatalytic Degradation and Oil/Water Separation. Fibers Polym 21, 1475–1487 (2020). https://doi.org/10.1007/s12221-020-9949-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9949-x

Keywords

Navigation