Skip to main content
Log in

Structural and Optical Properties of Nanofibers Prepared with Electrospinning by Using PMMA Integrated with Curcuminoids to Produce White LED

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Curcuminoids, a polyphenol from turmeric (Curcuma longa L.) have well-known diverse medical benefits. However, the nature of emitted light from curcuminoids and their poor stability limit their illumination applications but can be further improved using nanofibers and nanoparticles of curcuminoids. In this study, poly(methyl methacrylate) (PMMA) integrated curcuminoid nanofibers (PICNFs) were prepared through electrospinning and characterised. PMMA was mixed with C. longa L. powder to obtain impurity-free curcuminoid solution. Solutions with altering volumes (1, 2, 3, 4 and 5 ml) were spun to grow desired PICNFs. The structural, morphological and optical properties of the as-synthesised PICNFs (with and without annealing) were evaluated as a function of various PMMA concentrations (5, 10 and 15 wt%) to determine the feasibility of improving down-conversion white light emission. The chromatic traits of the proposed PICNFs were analysed under different light-emitting diode LED pumping wavelengths (365, 390 and 445 nm). The chromaticity coordinates (CIE), correlated colour temperature (CCT) and colour rendering index (CRI) of the obtained PICNFs were measured. The FTIR spectra of as-grown PICNFs displayed various characteristic IR bands, which were assigned to the vibrations of different functional groups in the structures. The FESEM images of pre- and post-annealed samples revealed the formation of nanofibers (diameter ranging from 250 nm to 300 nm) and nanoparticles (diameter ranging from 9 nm to 18 nm). The optimum values of CIE, CRI and CCT for the studied PICNFs were (0.3092, 0.315), 76.3 and 6,856 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Rüzgar, M. Birer, S. Tort, and F. Acartürk, FABAD J. Pharm. Sci., 38, 143 (2013).

    Google Scholar 

  2. M. Mirjalili and S. Zohoori, J. Nanostruct. Chem., 6, 207 (2016).

    Article  CAS  Google Scholar 

  3. J. Macossay, A. Marruffo, R. Rincon, T. Eubanks, and A. Kuang, Polym. Adv. Technol., 18, 180 (2007).

    Article  CAS  Google Scholar 

  4. S.-H. Shin, O. Purevdorj, O. Castano, J. A. Planell, and H.-W. Kim, J. Tissue Eng., 3, 2041731412443530 (2012).

    Article  Google Scholar 

  5. M. Mohammadian and A. Haghi, Bulg Chem. Commun., 46, 545 (2014).

    Google Scholar 

  6. Y. Lu, K. Shah, and J. Xu, Polymers, 9, 506 (2017).

    Article  Google Scholar 

  7. L. H. Sperling, “Introduction to Physical Polymer Science”, 4th ed., p.1, John Wiley & Sons, Hoboken, New Jersey, 2005.

    Book  Google Scholar 

  8. T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, and P. Supaphol, Eur. Polym. J, 41, 409 (2005).

    Article  CAS  Google Scholar 

  9. I. Y. Evchuk, R. Musii, R. Makitra, and R. Pristanskii, Russian J. Appl. Chem., 78, 1576 (2005).

    Article  CAS  Google Scholar 

  10. R. O. Ebewele, “Polymer Science and Technology”, 1st ed., p.16, CRC Press, Boca Raton, New York, 2000.

    Book  Google Scholar 

  11. D. Patra and C. Barakat, Spectrochim. Acta Part A: Mol. Biomol. Spectr:, 79, 1034 (2011).

    Article  CAS  Google Scholar 

  12. I. Chattopadhyay, K. Biswas, U. Bandyopadhyay, and R. K. Banerjee, Current Science-Bangalore, 87, 44 (2004).

    CAS  Google Scholar 

  13. F. Cunha Neto, L. T. Marton, S. V. de Marqui, T. A. Lima, and S. M. Barbalho, Critical Rev. Food Sci. Nutr., 59, 2136 (2018).

    Article  Google Scholar 

  14. B. Dutta, J. Med. Plants, 3, 116 (2015).

    Google Scholar 

  15. M. Itaya, T. Miyazawa, J.-M. Zingg, T. Eitsuka, A. Azzi, M. Meydani, T. Miyazawa, and K. Nakagawa, Phytomedicine, 59, 152902 (2019).

    Article  CAS  Google Scholar 

  16. M. Hatamipour, A. H. Sahebkar, S. H. Alavizadeh, M. Dorri, and M. R. Jaafari, Iran J. Basic Med. Sci., 22, 282 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. T. Farooqui and A. A. Farooqui, “Curcumin for Neurological and Psychiatric Disorders: Neurochemical and Pharmacological Properties”, 1st ed., p.28, Nikki Levy of Elsevier, London Wall, London, 2019.

    Google Scholar 

  18. P. B. Tsekova, M. G. Spasova, N. E. Manolova, N. D. Markova, and I. B. Rashkov, Mater. Sci. Eng: C, 73, 206 (2017).

    Article  CAS  Google Scholar 

  19. M. Al Shafouri, N. M. Ahmed, Z. Hassan, and M. A. Almessiere, IOP Conf. Ser.: Mater. Sci. Eng., 454, 012048 (2018).

    Article  Google Scholar 

  20. M. Al Shafouri, N. M. Ahmed, Z. Hassan, M. A. Almessiere, and M. Jumaah, Eur. Phys. J. Appl. Phys., 84, 10501 (2018).

    Article  Google Scholar 

  21. A. Bahadorimehr, Y. Jumril, I. C. Gebeshuber, C. F. Dee, and B. Y. Majlis, 10th IEEE International Conference on Nanotechnology, pp.1007–1011, 2010.

  22. J. S. Bedi, D. W. Lester, Y. X. Fang, J. F. Turner, J. Zhou, S. M. Alfadul, C. Perry, and Q. Chen, J. Polym. Eng., 33, 453 (2013).

    Article  CAS  Google Scholar 

  23. H. Mohammad Khanlou, B. Chin Ang, S. Talebian, A. Muhammad Afifi, and A. Andriyana, Text. Res. J., 85, 356 (2015).

    Article  Google Scholar 

  24. M. Kolari, U. Schmidt, E. Kuismanen, and M. Salkinoja-Salonen, J. Bacteriol., 184, 2473 (2002).

    Article  CAS  Google Scholar 

  25. T. Uyar, A. Balan, L. Toppare, and F. Besenbacher, Polymer, 50, 475 (2009).

    Article  CAS  Google Scholar 

  26. R. Huszánk, E. Szilágyi, Z. Szoboszlai, and Z. Szikszai, Nucl. Instrum. Meth. B, 450, 364 (2019).

    Article  Google Scholar 

  27. S. Szilasi, R. Huszank, D. Szikra, T. Váczi, I. Rajta, and I. Nagy, Mater. Chem. Phys., 130, 702 (2011).

    Article  CAS  Google Scholar 

  28. H.-J. Kim, D.-J. Kim, S. Karthick, K. Hemalatha, C. J. Raj, S. Ok, and Y. Choe, Int. J. Electrochem. Sci., 8, 8320 (2013).

    CAS  Google Scholar 

  29. N. E. Safie, N. A. Ludin, M. S. Su’ait, N. H. Hamid, S. Sepeai, M. A. Ibrahim, and M. A. M. Teridi, Malaysian J. Anal. Sci., 19, 1243 (2015).

    Google Scholar 

  30. R. Waranyoupalin, S. Wongnawa, M. Wongnawa, C. Pakawatchai, P. Panichayupakaranant, and P. Sherdshoopongse, Central Eur. J. Chem., 7, 388 (2009).

    CAS  Google Scholar 

  31. V. Singh and A. K. Mishra, Sci. Rep., 5, 11118 (2015).

    Article  CAS  Google Scholar 

  32. M.-F. Xu, H. Zhang, S. Zhang, H. L. Zhu, H.-M. Su, J. Liu, K. S. Wong, L.-S. Liao, and W. C. Choy, J. Mater. Chem. A, 3, 14424 (2015).

    Article  CAS  Google Scholar 

  33. A. Aspect, W. Barletta, and R. Bonifacio, “Coherent and Collective Interactions of Particles and Radiation Beams”, 1st ed., p.42, IOS Press, Amsterdam, 1996.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the School of Physics at University Sains Malaysia for supporting this research. We are grateful to the RCMO USM for supporting us with the Bridging grant (304.PFIZIK.6316276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser M. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Shafouri, M., Ahmed, N.M., Hassan, Z. et al. Structural and Optical Properties of Nanofibers Prepared with Electrospinning by Using PMMA Integrated with Curcuminoids to Produce White LED. Fibers Polym 21, 1733–1742 (2020). https://doi.org/10.1007/s12221-020-9783-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9783-1

Keywords

Navigation