Skip to main content
Log in

Mechanical and Interfacial Properties of Flax Fiber-reinforced Plastic Composites Based on a Chemical Modification Method

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Due to growing interest in environmental protection, eco-friendly fibers with high specific strength and low cost are widely used to reinforce matrix materials. Flax fiber is a natural renewable plant fiber that originates from the phloem of flax. Flax fibers not only have the characteristics of other natural fibers but also have the outstanding mechanical properties of natural fibers. However, due to the large amount of hydrophilic hydroxyl groups on the surface, the hydrophilic absorption of flax fibers is large, and the wet-heat durability of the composite is poor, which limits the use of flax fiber as a reinforcement material in civil engineering applications. In this study, based on the research results of flax fiber, a flax fiber sheet was grafted with multiwalled carbon nanotubes, a silane coupling agent and nano-TiO2 particles. The effect of different treatment methods and process parameters on the mechanical and interfacial properties of flax fiber-reinforced plastic (FFRP) composites materials was studied. The results show that the FFRP composites grafted with multiwalled carbon nanotubes have higher tensile strength and interlaminar shear strength than those grafted with the same content of nano-TiO2 particles. Flax fiber composites with improved interfacial properties can be obtained by grafting flax fiber sheets, but the content of particles on the flax fiber surface should not exceed 2.0 wt.% of nano-TiO2 and multiwalled carbon nanotubes. Under this treatment, the FFRP composites have improved properties, such as tensile strength, interlaminar shear strength and glass transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Li, L. G. Tabil, and S. Panigrahi, J. Polym. Environ., 15, 25 (2007).

    Article  Google Scholar 

  2. F. Z. Arrakhiz, M. El Achaby, M. Malha, M. O. Bensalah, O. Fassi-Fehri, R. Bouhfid, K. Benmoussa, and A. Qaiss, Mater. Des., 43, 200 (2013).

    Article  CAS  Google Scholar 

  3. M. Asim, M. Jawaid, K. Abdan, and M. R. Ishak, J. Bionic. Eng., 13, 426 (2016).

    Article  Google Scholar 

  4. S. K. Ramamoorthy, M. Skrifvars, and A. Persson, Polym. Rev, 55, 107 (2015).

    Article  CAS  Google Scholar 

  5. S. Taj, M. A. Munawar, and S. Khan, Proc. Pakistan Acad. Sci., 44, 129 (2007).

    CAS  Google Scholar 

  6. H. Wang, G. Xian, and H. Li, Compos. Part A: Appl. Sci. Manuf., 76, 172 (2015).

    Article  CAS  Google Scholar 

  7. V. K. Thakur, A. S. Singha, and I. K. Mehta, Int. J. Polym. Anal. Charact., 15, 137 (2010).

    Article  CAS  Google Scholar 

  8. M. Sood and G. Dwivedi, Egypt. J. Petrol., 27, 775 (2018).

    Article  Google Scholar 

  9. D. Sedan, C. Pagnoux, A. Smith, and T. Chotard, J. Eur. Ceram. Soc., 28, 183 (2008).

    Article  CAS  Google Scholar 

  10. C. Elanchezhian, B. V. Ramnath, G. Ramakrishnan, M. Rajendrakumar, V. Naveenkumar, and M. K. Saravanakumar, Mater. Today: P, 5, 1785 (2018).

    CAS  Google Scholar 

  11. M. R. Bambach, Compos. Struct., 210, 57 (2019).

    Article  Google Scholar 

  12. A. Hallonet, E. Ferrier, L. Michel, and B. Benmokrane, Constr. Build. Mater., 205, 679 (2019).

    Article  CAS  Google Scholar 

  13. L. Yan, N. Chouw, and K. Jayaraman, Compos. Part B: Eng., 56, 296 (2014).

    Article  CAS  Google Scholar 

  14. C. Baley, A. Le Duigou, A. Bourmaud, and P. Davies, Compos. Part A: Appl. Sci. Manuf., 43, 1226 (2012).

    Article  CAS  Google Scholar 

  15. Z. N. Azwa, B. F. Yousif, A. C. Manalo, and W. Karunasena, Mater. Des., 47, 424 (2013).

    Article  CAS  Google Scholar 

  16. M. Ramesh, Prog. Mater Sci., 102, 109 (2019).

    Article  CAS  Google Scholar 

  17. J. L. Thomason, Polym. Compos., 31, 1525 (2010).

    Article  CAS  Google Scholar 

  18. X. Wang, M. Petrů, and H. Yu, Constr. Build. Mater., 208, 220 (2019).

    Article  Google Scholar 

  19. S. Ben Abdallah, M. Teixeira, I. Chala, B. Otazaghine, R. Sonnier, C. Longuet, J.-C. Roux, and S. Rouif, Ind. Crop. Prod., 132, 430 (2019).

    Article  CAS  Google Scholar 

  20. Y. Li, C. Chen, J. Xu, Z. Zhang, B. Yuan, and X. Huang, J. Mater. Sci., 50, 1117 (2015).

    Article  Google Scholar 

  21. M. Foruzanmehr, L. Boulos, P. Y. Vuillaume, S. Elkoun, and M. Robert, Cellulose, 24, 1529 (2017).

    Article  CAS  Google Scholar 

  22. M. Foruzanmehr, P. Y. Vuillaume, S. Elkoun, and M. Robert, Mater. Des., 106, 295 (2016).

    Article  CAS  Google Scholar 

  23. J. C. Li, X. W. Chen, and F. L. Huang, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 652, 145 (2016).

    Article  CAS  Google Scholar 

  24. H. Wang, L. Yang, H. Guo, Y. Zhao, and J. Zhao, Fiber. Polym., 20, 1266 (2019).

    Article  CAS  Google Scholar 

  25. H. Wang, G. Xian, H. Li, and L. Sui, Fiber. Polym., 15, 1029 (2014).

    Article  CAS  Google Scholar 

  26. V. Prasad, M. A. Joseph, K. Sekar, and M. Ali, Mater. Today: P., 5, 24862 (2018).

    CAS  Google Scholar 

  27. V. Prasad, K. Sekar, S. Varghese, and M. A. Joseph, Compos. Part A: Appl. Sci. Manuf., 124, 105505 (2019).

    Article  Google Scholar 

  28. V. Prasad, M. A. Joseph, and K. Sekar, Compos. Part A: Appl. Sci. Manuf., 115, 360 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research in this paper has been supported by the Fundamental Research Funds for the Central Universities of China (Grant No. 2572019BJ01), National Natural Science Foundation of China (Grant No. 51708092) and China Postdoctoral Science Fund Project (Grant No. 2018M631894).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongguang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wu, H., Yang, L. et al. Mechanical and Interfacial Properties of Flax Fiber-reinforced Plastic Composites Based on a Chemical Modification Method. Fibers Polym 21, 1498–1507 (2020). https://doi.org/10.1007/s12221-020-9782-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9782-2

Keywords

Navigation