Skip to main content
Log in

Fibrillation of Coconut Fibers by Mechanical Refining to Enhance Its Reinforcing Potential in Epoxy Composites

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The reinforcing potential of coconut fibers, fibrillated by mechanical refining process, in an epoxy matrix was evaluated. The coconut fiber was fibrillated by a conical refiner for different duration (10 to 40 min) and subjected to chemical compositional analysis, size distribution by microscopy and crystallinity by XRD. The fibrillation by mechanical refining process did not affect the crystallinity of coconut fibers. But, cellulose content increased due to the removal of lignin during refining process. The fibrillated coconut fiber (FCF) was used to reinforce epoxy resin by casting process. The melting temperature, as analyzed by DSC, of epoxy composites increased from 294.75 °C (epoxy alone) to 338.96 °C (raw coconut fiber, RCF) and a maximum of 353.41 °C for 20 min processed FCF reinforced composites. The surface resistivity of epoxy control increased from 1.32 e10 Ω to 22.6 e10 Ω after reinforcing with control coconut fiber. But, the fibrillation process reduced the surface resistivity due to uniform distribution of FCF in the epoxy matrix avoiding the formation of air voids. Similar trend was observed for volume resistivity also. The damage force and tensile load increased significantly for the FCF reinforced composites, 61% and 12%, respectively, when compared to the RCF reinforced composites. Hence, as an alternative of conventional alkali treatment, fibrillation of coconut fibers could significantly improve the performance of epoxy composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Valášek, R. D’Amato, M. Müller, and A. Ruggiero, Compos. Part B-Eng., 146, 88 (2018).

    Article  Google Scholar 

  2. K. L. Pickering, M. G. A. Efendy, and T. M. Le, Compos. Part A-Appl. Sci. Manuf., 83, 98 (2016).

    Article  CAS  Google Scholar 

  3. V. Mittal, R. Saini, and S. Sinha, Compos. Part B-Eng., 99, 425 (2016).

    Article  CAS  Google Scholar 

  4. L. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, and M. S. Islam, Int. J. Polym. Sci., 2015, 15 (2015).

    Article  Google Scholar 

  5. G. Basu, L. Mishra, S. Jose, and A. K. Samanta, Ind. Crop. Prod., 77, 66 (2015).

    Article  CAS  Google Scholar 

  6. C. da Costa Nogueira, C. E. de Araújo Padilha, A. L. de Sá Leitão, P. M. Rocha, G. R. de Macedo, and E. S. dos Santos, Ind. Crop. Prod., 112, 734 (2018).

    Article  Google Scholar 

  7. C. da Costa Nogueira, C. E. de Araújo Padilha, A. A. de Jesus, D. F. de Santana Souza, C. F. de Assis, F. C. de Sousa Junior, and E. S. dos Santos, Ind. Crop. Prod., 130, 259 (2019).

    Article  Google Scholar 

  8. M. Ebrahimi, A. R. Caparanga, E. E. Ordono, and O. B. Villaflores, Renew. Energ., 109, 41 (2017).

    Article  CAS  Google Scholar 

  9. N. Ngadiman, M. Kaamin, A. Abd. Kadir, S. Sahat, A. Zaini, S. R. Nor Zentan, N. A. Ahmad, and W. H. A. Wan Amran, E3S Web Conf., 34, 01014 (2018).

    Article  Google Scholar 

  10. M. Hrabalova, M. Schwanninger, R. Wimmer, A. Gregorova, T. Zimmermann, and N. Mundigler, Bioresources, 6, 1631 (2011).

    CAS  Google Scholar 

  11. S. Biswas, S. Kindo, and A. Patnaik, Fiber. Polym., 12, 73 (2011).

    Article  CAS  Google Scholar 

  12. R. Kumar and S. Bhowmik, Fiber. Polym., 20, 428 (2019).

    Article  CAS  Google Scholar 

  13. K. G. Satyanarayana, A. G. Kulkarni, and P. K. Rohatgi, P. Indian Acad. Sci. C-Eng. Sci., 4, 419 (1981).

    Google Scholar 

  14. L. E. Wise, Pap. Trade J., 122, 35 (1946).

    CAS  Google Scholar 

  15. L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, Text. Res. J., 29, 786 (1959).

    Article  CAS  Google Scholar 

  16. S. J. Juikar and N. Vigneshwaran, Ind. Crop. Prod., 109, 420 (2017).

    Article  CAS  Google Scholar 

  17. P. Bajpai, “Biermann’s Handbook of Pulp and Paper”, 3rd Ed. (P. Bajpai Ed.), p.1, Elsevier, 2018.

  18. J. C. d. Santos, L. Á. d. Oliveira, L. M. Gomes Vieira, V. Mano, R. T. S. Freire, and T. H. Panzera, Constr. Build. Mater., 211, 427 (2019).

    Article  Google Scholar 

  19. K. Biswas and S. Palsule, Polym. Polym. Compos., 24, 663 (2016).

    CAS  Google Scholar 

  20. L. Mishra, G. Basu, and A. K. Samanta, Fiber. Polym., 18, 357 (2017).

    Article  CAS  Google Scholar 

  21. C. G. Mothé and I. C. de Miranda, J. Therm. Anal. Calorim., 97, 661 (2009).

    Article  Google Scholar 

  22. M. Zhan, R. P. Wool, and J. Q. Xiao, Compos. Part A-Appl. Sci. Manuf., 42, 229 (2011).

    Article  Google Scholar 

  23. G. H. D. Tonoli, A. P. Joaquim, M.-A. Arsène, K. Bilba, and H. Savastano, Mater. Manuf. Process., 22, 149 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the support rendered by Dr. Sujata Saxena, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India to carry out this research work. Authors also thank the technical support rendered by Dr. A. Arputharaj, Mr. Rajesh P Kadam, Mr. Rajesh Narkar, Mr. G. B. Hadge and Dr. C. D’ Souza during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadanathangam Vigneshwaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthilkumar, T., Bharimalla, A.K., Sundaramoorthy, C. et al. Fibrillation of Coconut Fibers by Mechanical Refining to Enhance Its Reinforcing Potential in Epoxy Composites. Fibers Polym 21, 2111–2117 (2020). https://doi.org/10.1007/s12221-020-9754-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9754-6

Keywords

Navigation