Skip to main content
Log in

Effects of Hydrodynamic Diameter of Nanoparticles on Antibacterial Activity and Durability of Ag-treated Cotton Fabrics

  • Communication
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this paper, silver nanoparticles (Ag-NPs) colloidal suspensions with different particle sizes of 5 to 40 nm were prepared. Dynamic light scattering (DLS) technique showed that the average hydrodynamic diameters of Ag-NPs were much larger than the particle diameters obtained using transmission electron microscopy and UV-Vis spectroscopy. The as-prepared Ag-NPs with different average hydrodynamic diameters were incorporated in cotton fabrics by the pad-dry-cure method. The silver content before and after washing cycles were determined by inductively coupled plasma spectrometry (ICP). The antibacterial properties of the fabrics after 0, 5 and 10 laundering cycles against both the Gram-negative bacterium of Escherichia coli (E. coli) and the Gram-positive bacterium of Staphylococcus aureus (S. aureus) were examined and a clear volcano trend was observed between the bacterial reduction rate (BR) and the hydrodynamic diameter of Ag-NPs loaded on the fibers. The cotton fabric treated by the Ag-NPs with the hydrodynamic diameter of 52 nm, exhibited the highest antibacterial activity (about 98 %) after 10 laundering cycles, while the other samples on either side of the volcano were less active. The cytotoxicity of the cotton fabrics treated with Ag-NPs was assayed on mouse embryonic fibroblast cells and evaluated by an MTT assay. The results showed that Ag-NPs were not toxic. Field emission scanning electron microscopy (FESEM) obtained from the cotton fabric before and after washing cycles demonstrated that the Ag-NPs had tight bonds with the surface of cotton fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Panáček, M. Kolář, R. Večeřová, R. Prucek, J. Soukupová, V. Kryštof, P. Hamal, R. Zbořil, and L. Kvítek, Biomaterials, 30, 6333 (2009).

    Article  Google Scholar 

  2. S. Galdiero, A. Falanga, M. Vitiello, M. Cantisani, V. Marra, and M. Galdiero, Molecules, 16, 8894 (2011).

    Article  CAS  Google Scholar 

  3. J. W. Alexander, Surg. Infect., 10, 289 (2009).

    Article  Google Scholar 

  4. Q. Xu, J. Gu, Y. Zhao, X. Ke, and X. Liu, Fiber. Polym., 18, 2204 (2017).

    Article  CAS  Google Scholar 

  5. T.-S. Kim, J.-R. Cha, and M.-S. Gong, Fiber. Polym., 18, 453 (2017).

    Article  CAS  Google Scholar 

  6. A. Azadbakht and A. R. Abbasi, Fiber. Polym., 13, 264 (2012).

    Article  CAS  Google Scholar 

  7. B. Simončič and D. Klemenčič, Text. Res. J., 86, 210 (2015).

    Article  Google Scholar 

  8. V. Sambhy, M. M. MacBride, B. R. Peterson, and A. Sen, J. Am. Chem. Soc., 128, 9798 (2006).

    Article  CAS  Google Scholar 

  9. Q. Xu, L. Xie, H. Diao, F. Li, Y. Zhang, F. Fu, and X. Liu, Carbohyd. Polym., 177, 187 (2017).

    Article  CAS  Google Scholar 

  10. D. Dechojarassri, S. Asaina, S. Omote, K. Nishida, T. Furuike, and H. Tamura, Int. J. Biol. Macromol., 104, 1509 (2017).

    Article  CAS  Google Scholar 

  11. D. Marković, C. Deeks, T. Nunney, Ž. Radovanović, M. Radoičić, Z. Šaponjić, and M. Radetić, Carbohyd. Polym., 200, 173 (2018).

    Article  Google Scholar 

  12. Y. Wu, Y. Yang, Z. Zhang, Z. Wang, Y. Zhao, and L. Sun, Text. Res. J., 89, 867 (2018).

    Article  Google Scholar 

  13. S. P. Rojas-Lema, S. G. Galeas-Hurtado, and V. H. Guerrero-Barragán, Rev. Fac. Ing., 26, 109 (2017).

    Article  Google Scholar 

  14. V. G. Nadiger and S. R. Shukla, Indian J. Fiber. Text., 42, 465 (2017).

    CAS  Google Scholar 

  15. E. Matyjas-Zgondek, A. Bacciarelli-Ulacha, E. Rybicki, M. Szynkowska, and M. Kołodziejczyk, Fibers. Text. East. Eur., 16, 101 (2008).

    CAS  Google Scholar 

  16. H. Fashandi, S. H. Amirshahi, M. Amani Tehran, and S. Gorji Kandi, Fiber. Polym., 11, 767 (2010).

    Article  Google Scholar 

  17. Y. Li, P. Leung, L. Yao, Q. W. Song, and E. Newton, J. Hosp. Infect., 62, 58 (2006).

    Article  CAS  Google Scholar 

  18. G. Singh, J. Beddow, C. Mee, L. Maryniak, E. M. Joyce, and T. J. Mason, Int. J. Toxicol., 36, 478 (2017).

    Article  CAS  Google Scholar 

  19. S. Peng, J. M. McMahon, G. C. Schatz, S. Gray, and Y. Sun, P. Natl. Acad. Sci., 107, 14530 (2010).

    Article  CAS  Google Scholar 

  20. K. Kluczyk-Korch and W. A. Jacak, Acta. Phys. Pol. A, 129, A83 (2016).

    Article  Google Scholar 

  21. J. Stetefeld, S. A. McKenna, and T. R. Patel, Biophys. Rev., 8, 409 (2016).

    Article  CAS  Google Scholar 

  22. C. M. Maguire, M. Rösslein, P. Wick, and A. Prina-Mello, Sci. Technol. Aadv. Mat., 19, 732 (2018).

    Article  CAS  Google Scholar 

  23. M. Safi and T. Soleymanian, J. Text. Inst., 108, 2040 (2017).

    Article  Google Scholar 

  24. C.-N. Lok, C.-M. Ho, R. Chen, Q.-Y. He, W.-Y. Yu, H. Sun, P. K.-H. Tam, J.-F. Chiu, and C.-M. Che, J. Proteome Res., 5, 916 (2006).

    Article  CAS  Google Scholar 

  25. A. Mai-Prochnow, M. Clauson, J. Hong, and A. B. Murphy, Sci. Rep., 6, 38610 (2016).

    Article  CAS  Google Scholar 

  26. T. C. Dakal, A. Kumar, R. S. Majumdar, and V. Yadav, Front. Microbiol., 7, 1831 (2016).

    Article  Google Scholar 

  27. J. Hedberg, S. Skoglund, M.-E. Karlsson, S. Wold, I. Odnevall Wallinder, and Y. Hedberg, Environ. Sci. Technol., 48, 7314 (2014).

    Article  CAS  Google Scholar 

  28. L. Geranio, M. Heuberger, and B. Nowack, Environ. Sci. Technol., 43, 8113 (2009).

    Article  CAS  Google Scholar 

  29. B.-J. L. Van Hong Nguyen, Int. J. Nanomed., 12, 3137 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ehsan Momeni Heravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heravi, M.E.M. Effects of Hydrodynamic Diameter of Nanoparticles on Antibacterial Activity and Durability of Ag-treated Cotton Fabrics. Fibers Polym 21, 1173–1179 (2020). https://doi.org/10.1007/s12221-020-9748-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9748-4

Keywords

Navigation