Skip to main content
Log in

Potential of Chitosan Hydrogel Based Activated Carbon Nanoparticles and Non-Activated Carbon Nanoparticles for Water Purification

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Water pollution has been an alarming concern for researchers due to its hazard to life, human health, and environment. Chitosan and lignocellulose materials have been harnessed for the purification of contaminated water. The objective of this study was to investigate the potential use of chitosan hydrogel filled with activated carbon nanoparticles (ACNPs) and non-activated carbon nanoparticles (n-ACNPs) for water purification. The results of this study revealed that both ACNPs and n-ACNPs were comprised by poly- and single crystals with an average nanofiber diameter of 22.27 nm whereas n-ACNPs were aggregated with diameter size of above 100 nm and was dominated with amorphous region. Limited voids were observed in chitosan/ACNPs hydrogel but n-ACNPs added in chitosan hydrogel were aggregated to form voids. With the addition of ACNPs and n-ACNPs, there was not dramatic change in IR wavenumber. The addition of high ACNPs concentration increased crystallinity index (CrI) of chitosan hydrogel but high addition of n-ACNPs concentration decreased CrI’s chitosan hydrogel. After chitosan/ACNPs and chitosan/n-ACNPs hydrogel were submerged with heavy metals, IR spectra were altered, and the internal surfaces of these hydrogels became different. Both chitosan/ACNPs and chitosan/n-ACNPs hydrogel were able to absorb Fe and Zn effectively over heavy metals of Pb and Cu. Chitosan hydrogel was more effective to kill Escherichia coli than chitosan/ACNPs and chitosan/n-ACNPs hydrogel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. WHO (World Health Organization). Retrieved from https://www.who.int/news-room/detail/12-07-2017-2-1-billion-people-lack-safe-drinking-water-at-home-more-than-twice-as-many-lack-safe-sanitation (2017).

  2. B. Sani, E. Basile, L. Rossi, and C. Lubello, J. Water Supply: Res. Technol. — AQUA, 58, 41 (2009).

    Article  CAS  Google Scholar 

  3. V. K. Agrawal and R. Bhalwar, R. Med. J. Armed Forces India, 65, 260 (2009).

    Article  Google Scholar 

  4. J. Wood, J. Gifford, J. Arba, and M. Shaw, Desalination, 250, 973 (2010).

    Article  CAS  Google Scholar 

  5. S. J. Miwalawasna, Int. J. Emerging Technol. Adv. Eng., 3, 75 (2013).

    Google Scholar 

  6. B. Jurado-Sanchez, S. Sattayasamitsathit, W. Gao, L. Santos, Y. Fedorak, V. V. Singh, J. Orozco, M. Galarnyk, and J. Wang, Small, 11, 499 (2014).

    Article  Google Scholar 

  7. L.-L. Min, L.-B. Zhong, Y.-M. Zheng, Q. Liu, Z.-H. Yuan, and L.-M. Yang, Sci. Reports, 6, 1 (2016).

    Google Scholar 

  8. H. Chopra and G. Ruhi, Pharm. Innov. J., 5, 92 (2016).

    CAS  Google Scholar 

  9. J. Desbrieres and E. Guibal, Polym. Int., 67, 7 (2017).

    Article  Google Scholar 

  10. A. J. Al-Manhel, A. R. S. Al-Hilphy, and A. K. Niamah, J. Saudi Soc. Agri. Sci., 17, 186 (2018).

    Google Scholar 

  11. P. Nechita in “Biological Activities and Application of Marine Polysaccharides” (E. A. Shalaby Ed.), pp. 209–228, IntechOpen Limited, London, 2017.

  12. M. Z. Alam, S. A. Muyibi, M. F. Mansor, and R. Wahid, J. Envi. Sci., 19, 103 (2007).

    Article  CAS  Google Scholar 

  13. R. Wirasnita, T. Hadibarata, A. R. M. Yusoff, and Z. M. Lazim, Jurnal Teknologi, 74, 77 (2015).

    Article  Google Scholar 

  14. H.-W. Liang, X. Cao, W.-J. Zhang, H.-T. Lin, F. Zhou, L.-F. Chen, and S.-H. Yu, Adv. Funct. Mater., 21, 3851 (2011).

    Article  CAS  Google Scholar 

  15. Y. H. Li, Y. M. Zhao, W. B. Hu, I. Ahmad, Y. Q. Zhu, X. J. Peng, and Z. K. Luan, J. Phys: Conference Series, 61, 698 (2007).

    CAS  Google Scholar 

  16. M. Faccini, G. Borja, M. Boerrigter, D. M. Martin, S. M. Crespiera, S. Vazquez-Campos, L. Aubouy, and D. Amantia, J. Nanomater., 2015, 247471 (2015).

    Article  Google Scholar 

  17. Z. Karim, A. P. Mathew, M. Grahn, J. Mouzon, and K. Oksman, Carbohydr. Polym., 112, 668 (2014).

    Article  CAS  Google Scholar 

  18. L. N. Nthunya, M. L. Masheane, S. P. Malinga, E. N. Nxumalo, and S. D. Mhlanga, Cogent Chem., 3, 1357865 (2017).

    Article  Google Scholar 

  19. B. Koh and W. Cheng, Langmuir, 30, 10899 (2014).

    Article  CAS  Google Scholar 

  20. K. Yang, Z. L. Yi, Q. F. Jing, D. H. Lin, and J. Zhejiang, University-Sci. A (Appl. Phys. Eng.), 15, 547 (2014).

    Google Scholar 

  21. A. R. Bhattacharyya, T. V. Sreekumar, T. Liu, S. Kumar, L. M. Ericson, R. H. Hauge, and R. E. Smalley, Polymer, 44, 2373 (2003).

    Article  CAS  Google Scholar 

  22. S. Zhang, M. L. Minus, L. Zhu, C. P. Wong, and S. Kumar, Polymer, 49, 1356 (2008).

    Article  CAS  Google Scholar 

  23. F. A. Belmontes, L. F. R. deValle, A. B. E. Martinez, J. G. M. Colunga, E. R. Vargas, S. S. Valdes, J. C. O. Cisneros, E. E. M. Segovia, and F. I. B. Raminez, Int. J. Polym. Sci., 2016, 9839201 (2016).

    Google Scholar 

  24. S. Wu, B. Duan, A. Lu, Y. Wang, Q. Ye, and L. Zhang, Carbohydr. Polym., 174, 830 (2017).

    Article  CAS  Google Scholar 

  25. L. Carson, C. K. Brown, M. Stewart, A. Oki, G. Regisford, Z. Luo, and V. I. Bakhmutov, Mater. Lett., 63, 617 (2009).

    Article  CAS  Google Scholar 

  26. R. Ramya, P. N. Sudha, and J. Mahalakshmi, Int. J. Sci. Res. Pub., 2, 1 (2012).

    Google Scholar 

  27. D. Zvezdova, Synthesis and Characterization of Chitosan from Marine Sources in Black Sea, 49, 65 (2010).

    Google Scholar 

  28. D. Sugiyanti, P. Darmadji, S. Anggrahini, C. Anwar, and U. Santoso, Pakistan J. Biol., 21, 441 (2018).

    Article  CAS  Google Scholar 

  29. K. Pyrzynska and M. Bystrzejewski, Colloids Surface A: Physicochem. Eng. Aspects, 362, 102 (2010).

    Article  CAS  Google Scholar 

  30. S. Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, and R. S. Bonabi, J. Phys. D: Appl. Phys., 46, 165303 (2013).

    Article  Google Scholar 

  31. R. Wang, Z. Wu, Z. Qin, C. Chen, H. Zhu, J. Wu, G. Chen, W. Fana, and J. Wang, Catal. Sci. Technol., 6, 993 (2016).

    Article  CAS  Google Scholar 

  32. S. R. Popuri, R. Frederick, C.-Y. Chang, S.-S. Fang, C.-C. Wang, and L. C. Lee, Desalin. Water Treat., 52, 691 (2014).

    Article  CAS  Google Scholar 

  33. R. C. Goy, D. de Britto, and O. B. G. Assis, Polímeros: Ciência e Tecnologia, 19, 241 (2009).

    Article  CAS  Google Scholar 

  34. R. E. Morsi, A. M. Alsabagh, S. A. Nasr, and M. M. Zaki, Int. J. Biol. Macromol., 97, 264 (2017).

    Article  CAS  Google Scholar 

  35. J. Venkatesan, R. Jayakumar, A. Mohandas, I. Bhatnagar, and S.-K. Kim, Materials, 7, 3946 (2014).

    Article  CAS  Google Scholar 

  36. H. A. Shawky, A. H. M. El-Aassar, and D. E. A. Zei, J. App. Polym. Sci., 125, E93 (2012).

    Article  CAS  Google Scholar 

  37. H. Lee, S. Mall, P. He, D. Shi, S. Narasimhadevara, Y. Y. Heung, V. Shanov, and M. J. Schulz, Compos. Part B-Eng., 38, 58 (2007).

    Article  CAS  Google Scholar 

  38. E. Supriyantini, B. Yulianto, A. Ridlo, S. Sedjati, and A. Caesario, Jurnal Kelautan Tropis, 21, 23 (2018).

    Article  Google Scholar 

  39. A. A. Okoya, A. B. Akinyele, O. S. Amuda, and I. E. Ofoezie, Ame. Chemi. Sci. J., 11, 1 (2016).

    Article  CAS  Google Scholar 

  40. A. Zul, Jurnal Sains Kimia, 7, 15 (2003).

    Google Scholar 

  41. J. Yang, B. Hou, J. Wang, B. Tian, J. Bi, N. Wang, X. Li, and X. Huang, Nanomaterials, 9, 424 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank the Indonesian Oil Palm Estate Fund Agency (BPDP-KS) of Ministry of Finance, Republic of Indonesia for financial support granted to our students under a research scheme of the 2019 BPDP-KS Grant for Students’ Research. We also thank to SEAMEO BIOTROP for proving us additional funding to finalize this study. We also thank Ms. Reni Sarasmita and Ms. Andam Sofi Astarina for helping us to finalize the laboratory works. In addition, we acknowledge sincerely the tremendous contribution of Bogor Agricultural University (IPB University), Indonesia Institute of Sciences (LIPI), and Research, Development, and Innovation Agency (FOERDIA) of Indonesia Ministry of Environment and Forestry to the finalization of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achmad Solikhin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puspitasari, F.H., Nurdiansyah, Salamah, U. et al. Potential of Chitosan Hydrogel Based Activated Carbon Nanoparticles and Non-Activated Carbon Nanoparticles for Water Purification. Fibers Polym 21, 701–708 (2020). https://doi.org/10.1007/s12221-020-9746-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9746-6

Keywords

Navigation