Skip to main content
Log in

Utilization of Three Bark Extractives as Natural Photostabilizers for the Photostabilization of Wood Flour/Polypropylene Composites

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Three kinds of tree bark extractives from trembling aspen (Populus tremuloides) (AE), lodgepole pine (Pinus contorta) (LE), and western red cedar (Thuja plicata) (RE) were produced and used as antioxidants. The antioxidation activities of those extractives were evaluated and compared with commercial antioxidant butylated hydroxytoluene (BHT). The obtained extractives were applied as natural photostabilizers to produce wood flour/polypropylene (WF/PP) composites at an addition level of 2 wt%. The composites were subjected to QUV accelerated weathering tester for a total of 1200 h. The changes in surface color, surface morphology, and surface chemistry of composites were investigated during the exposure. The results showed that all bark extractives alleviated the photodegradation of composites successfully. Among them, RE was proved to be the most effective. It exhibited excellent UV absorption and similar free-radical inhibition ability compared with BHT. Consequently, composites containing RE exhibited less discoloration, less severe surface cracking, and less changes in surface chemistry during the whole weathering process. Overall, these results revealed that RE had great potential as a natural photostabilizer in polymer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ashori, Bioresource Technol., 99, 4661 (2008).

    CAS  Google Scholar 

  2. J. M. Park, S. T. Quang, B. S. Hwang, and K. L. DeVries, Compos. Sci. Technol., 66, 2686 (2006).

    CAS  Google Scholar 

  3. J. Chen, Z. Teng, and J. Wu, Polym. Compos., 38, 2140 (2017).

    CAS  Google Scholar 

  4. J. M. Park, P. G. Kim, J. H. Jang, Z. Wang, B. S. Hwang, and K. L. DeVries, Compos. Part B Eng., 39, 1042 (2008).

    Google Scholar 

  5. T. Ratanawilai, K. Nakawirot, A. Deachsrijan, and C. Homkhiew, Fiber. Polym., 15, 2160 (2014).

    CAS  Google Scholar 

  6. W. Wang, Y. Peng, M. Zammarano, W. Zhang, and J. Li, Polymers, 9, 615 (2017).

    PubMed Central  Google Scholar 

  7. M. Kargar, A. H. Behravesh, and H. Mohammad Taheri, Polym. Compos., 37, 1674 (2016).

    CAS  Google Scholar 

  8. N. M. Stark and L. M. Matuana, Polym. Degrad. Stab., 92, 1883 (2007).

    CAS  Google Scholar 

  9. J. S. Fabiyi and A. G. McDonald, Compos. Part A Appl. Sci., 41, 1434 (2010).

    Google Scholar 

  10. C. Homkhiew, T. Ratanawilai, and W. Thongruang, Ind. Crop. Prod., 56, 52 (2014).

    CAS  Google Scholar 

  11. I. Yakimets, D. Lai, and M. Guigon, Polym. Degrad. Stab., 86, 59 (2004).

    CAS  Google Scholar 

  12. Y. Amintowlieh, C. Tzoganakis, S. G. Hatzikiriakos, and A. Penlidis, Polym. Degrad. Stab., 104, 1 (2014).

    CAS  Google Scholar 

  13. U. Müller, M. Rätzsch, M. Schwanninger, M. Steiner, and H. Zöbl, J. Photoch. Photobio. B, 69, 97 (2003).

    Google Scholar 

  14. L. M. Matuana, S. Jin, and N. M. Stark, Polym. Degrad. Stab., 96, 97 (2011).

    CAS  Google Scholar 

  15. K. K. Pandey and T. Vuorinen, Polym. Degrad. Stab., 93, 2138 (2008).

    CAS  Google Scholar 

  16. P. Nzokou and D. P. Kamdem, Color Res. Appl., 31, 425 (2006).

    Google Scholar 

  17. T. C. Chang, H. T. Chang, C. L. Wu, H. Y. Lin, and S. T. Chang, Polym. Degrad. Stab., 95, 1518 (2010).

    CAS  Google Scholar 

  18. T. C. Chang, H. Y. Lin, S. Y. Wang, and S. T. Chang, Polym. Degrad. Stab., 105, 42 (2014).

    CAS  Google Scholar 

  19. T. C. Chang, N. C. Hsiao, P. C. Yu, and S. T. Chang, Wood Sci. Technol., 49, 811 (2015).

    CAS  Google Scholar 

  20. T. C. Chang and S. T. Chang, Wood Sci. Technol., 51, 1133 (2017).

    CAS  Google Scholar 

  21. P. N. Diouf, T. Stevanovic, and A. Cloutier, Wood Sci. Technol., 43, 457 (2009).

    CAS  Google Scholar 

  22. P. N. Diouf, T. Stevanovic, and A. Cloutier, Food Chem., 113, 897 (2009).

    CAS  Google Scholar 

  23. Z. Huang and N. Yan, Wood Fiber Sci., 46, 167 (2014).

    CAS  Google Scholar 

  24. M. Yalcin, H. Pelit, C. Akcay, and N. Cakicier, Color. Technol.133, 334 (2017).

    CAS  Google Scholar 

  25. E. D. Tomak, F. Arican, O. Gonultas, and E. D. S. Parmak, Polym. Degrad. Stab., 151, 152 (2018).

    CAS  Google Scholar 

  26. E. Aspé and K. Fernández, Ind. Crop. Prod., 34, 838 (2011).

    Google Scholar 

  27. S. Zhang, L. Su, L. Liu, and G. Fang, Ind. Crop. Prod., 77, 451 (2015).

    CAS  Google Scholar 

  28. K. R. Aadil, A. Barapatre, S. Sahu, H. Jha, and B. N. Tiwary, Int. J. Biol. Macromol., 67, 220 (2014).

    CAS  PubMed  Google Scholar 

  29. N. M. Stark and L. M. Matuana, Polym. Degrad. Stab., 91, 3048 (2006).

    CAS  Google Scholar 

  30. C. Badji, L. Soccalingame, H. Garay, A. Bergeret, and J. C. Bénézet, Polym. Degrad. Stab., 137, 162 (2017).

    CAS  Google Scholar 

  31. Y. Chen, N. M. Stark, M. A. Tshabalala, J. Gao, and Y. Fan, Materials, 9, 610 (2016).

    PubMed Central  Google Scholar 

  32. D. Rasouli, N. T. Dintcheva, M. Faezipour, F. P. La Mantia, M. R. M. Farahani, and M. Tajvidi, Polym. Degrad. Stab., 133, 85 (2016).

    CAS  Google Scholar 

  33. B. K. Deka and T. K. Maji, Compos. Part A Appl. Sci., 42, 2117 (2011).

    Google Scholar 

  34. S. Butylina, O. Martikka, and T. Kärki, Polym. Degrad. Stab., 120, 10 (2015).

    CAS  Google Scholar 

  35. S. Butylina, M. Hyvärinen, and T. Kärki, Compos. Part A Appl. Sci., 43, 2087 (2012).

    CAS  Google Scholar 

  36. C. M. Popescu, M. C. Popescu, and C. Vasile, Int. J. Boil Macromol, 48, 667 (2011).

    CAS  Google Scholar 

  37. R. Gadioli, J. A. Morais, W. R. Waldman, and M. A. De Paoli, Polym. Degrad. Stab., 108, 23 (2014).

    CAS  Google Scholar 

  38. K. Zheng, H. Tang, Q. Chen, L. Zhang, Y. Wu, and Y. Cui, Polym. Degrad. Stab., 112, 27 (2015).

    CAS  Google Scholar 

  39. A. A. Morandim-Giannetti, J. A. M. Agnelli, B. Z. Lanças, R. Magnabosco, S. A. Casarin, and S. H. Bettini, Carbohydr. Polym., 87, 2563 (2012).

    CAS  Google Scholar 

  40. W. A. N. N. A. Ammawath, Y. B. Che Man, R. B. Abdul Rahman, and B. S. Baharin, J. Am. Oil Chem. Soc., 83, 187 (2006).

    CAS  Google Scholar 

  41. P. C. Babu, N. Sundaraganesan, Ö. Dereli, and E. Türkkan, Spectrochim. Acta Part A, 79, 562 (2011).

    Google Scholar 

  42. V. Bondet, W. Brand-Williams, and C. L. W. T. Berset, LWT-Food Sci. Technol., 30, 609 (1997).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to the Fundamental Research Funds for the Central Universities (BLX201822), Beijing Forestry University Outstanding Young Talent Cultivation Project (2019JQ03013), Natural Sciences and Engineering Research Council of Canada (NSERC), and China Postdoctoral Science Foundation (2018M641224) for financial support of this work. The authors also are grateful to Dr. Heyu Chen, Dr. Peiyu Kuo, and Shiang Law at University of Toronto for the preparation of bark extractives and composites, as well as the characterization of antioxidation activity of bark extractives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinzhen Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Y., Yan, N. & Cao, J. Utilization of Three Bark Extractives as Natural Photostabilizers for the Photostabilization of Wood Flour/Polypropylene Composites. Fibers Polym 21, 1488–1497 (2020). https://doi.org/10.1007/s12221-020-9694-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9694-1

Keywords

Navigation