Skip to main content
Log in

Impact Properties of the Chemically Treated Hemp Fibre Reinforced Polyester Composites

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Plant based hemp fibre properties were found to be highly influenced by changes in the amounts of cellulose, hemicellulose and lignin constituents within the fibre. These fibre constituents play a major role for effective interfacial adhesion between the fibre and the matrix. Chemical treatments such as alkali (NaOH), acetyl (acetic acid & acetic anhydride) and silane (siloxane) treatments have the potential to react with constituent contents by varying their amounts. In this study, hemp fibre was treated with alkali (0–10 % NaOH), acetyl and silane chemicals. Treated fibres were mixed with polyester matrix to produce composites. The effects of chemical treatments on hemp fibres and the resulted polyester matrix composite were analysed through impact testing of the composite samples. Alkali treatments on hemp fibres enhanced the impact resistance properties (around 43 % lower absorbed energy and 40 % higher rebounded energy) of its composites compared to the untreated cases. Lower absorption energy and higher rebounded energy indicates strong interfacial bonding between the fibre and matrix. Improvements are governed by the removal of hemicellulose and lignin from the fibre, which provides a platform for better chemical reactions between fibres and matrix. On the other hand, acetyl treatments on the higher concentrations of NaOH pre-treated fibres reduced the fibres’ ability to support impact loadings (22 % higher rebounded energy compared to the untreated cases). In the two treatment conditions, fibre lessen their strength due to excessive removal of hemicellulose and lignin constituents, and composites exhibited lower impact properties compared to the NaOH treated samples. Similar impact properties were also recorded for alkali pre-treated silanised composites. As alkali pre-treatment removed the hydroxyl groups from the fibre, further silane treatment could not develop silanols to create strong interface bonding. As a result, composites failed under lower impact resistance compared to the NaOH treated samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, Compos. Part B: Eng., 43, 2883 (2012).

    Article  CAS  Google Scholar 

  2. M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, Compos. Part B: Eng., 53, 362 (2013).

    Article  CAS  Google Scholar 

  3. M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, Appl. Surf. Sci., 276, 13 (2013).

    Article  CAS  Google Scholar 

  4. M. M. Kabir, H. Wang, K. T. Lau, F. Cardona, and T. Aravinthan, Compos. Part B: Eng., 43, 159 (2012).

    Article  CAS  Google Scholar 

  5. M. J. John and R. D. Anandjiwala, Polym. Compos., 29, 187 (2008).

    Article  CAS  Google Scholar 

  6. X. Li, L. Tabil, and S. Panigrahi, J. Polym. Environ., 15, 25 (2007).

    Article  Google Scholar 

  7. L. Y. Mwaikambo, N. Tucker, and A. J. Clark, Macromol. Mater. Eng., 292, 993 (2007).

    Article  CAS  Google Scholar 

  8. D. Ray, B. K. Sarkar, A. K. Rana, and N. R. Bose, Bull. Mater. Sci., 24, 129 (2001).

    Article  CAS  Google Scholar 

  9. G. Beckermann and K. L. Pickering, Compos. Part A: Appl. Sci. Manuf., 39, 979 (2008).

    Article  Google Scholar 

  10. A. K. Bledzki, A. A. Mamun, M. Lucka-Gabor, and V. S. Gutowsk, eXPRESS Polym. Lett., 2, 413 (2008).

    Article  CAS  Google Scholar 

  11. V. Tserki, N. E. Zafeiropoulos, F. Simon, and C. Panayiotou, Compos. Part A: Appl. Sci. Manuf., 36, 1110 (2005).

    Article  Google Scholar 

  12. S. Mishra, A. Mohanty, L. T. Drzal, M. Misra, S. Parija, S. Nayak, and S. Tripathy, Compos. Sci. Technol., 63, 1377 (2003).

    Article  CAS  Google Scholar 

  13. M. Sreekala, M. Kumaran, S. Joseph, M. Jacob, and S. Thomas, Appl. Compos. Mater., 7, 295 (2000).

    Article  CAS  Google Scholar 

  14. Y. Seki, Materials. Sci. Eng.: A, 508, 247 (2009).

    Article  Google Scholar 

  15. D. Delfosse and A. Poursartip, Compos. Part A: Appl. Sci. Manuf., 28, 647 (1997).

    Article  Google Scholar 

  16. H. Hamada, S. Ramakrishna, and H. Satoh, Composites, 26, 749 (1995).

    Article  CAS  Google Scholar 

  17. T. W. Shyr and Y. H. Pan, Compos. Struct., 62, 193 (2003).

    Article  Google Scholar 

  18. S. R. Reid and G. Zhou, “Impact Behaviour of Fibre-reinforced Composite Materials and Structures”, CRC Woodhead Publishing Limited, 80 High Street, Sawston, Cambridge, CB22 3HJ, UK, 2000.

    Book  Google Scholar 

  19. A. K. Mohanty, M. A. Misra, and G. Hinrichsen, Macromol. Mater. Eng., 276, 1 (2000).

    Article  Google Scholar 

  20. H. Dhakal, Z. Zhang, and M. Richardson, Compos. Sci. Technol., 67, 1674 (2007).

    Article  CAS  Google Scholar 

  21. J. Lojewska, P. Miskowiec, T. Lojewski, and L. M. Proniewicz, Polym. Degrad. Stabil., 88, 512 (2005).

    Article  CAS  Google Scholar 

  22. F. Peng, J. L. Ren, F. Xu, J. Bian, P. Peng, and R. C. Sun, J. Agric. Food Chem., 58, 1768 (2009).

    Article  Google Scholar 

  23. K. Wang, J. Jiang, F. Xu, R. C. Sun, and M. S. Baird, BioResources, 5, 1717 (2010).

    CAS  Google Scholar 

  24. Q. Liu, Z. Zhong, S. Wang, and Z. Luo, J. Anal. Appl. Pyrol., 90, 213 (2011).

    Article  CAS  Google Scholar 

  25. H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Fuel, 86, 1781 (2007).

    Article  CAS  Google Scholar 

  26. X. F. Sun, R. Sun, P. Fowler, and M. S. Baird, J. Agric. Food Chem., 53, 860 (2005).

    Article  CAS  Google Scholar 

  27. O. David-West, D. Nash, and W. Banks, Compos. Struct., 83, 247 (2008).

    Article  Google Scholar 

  28. K. Henkhaus, 16th ASCE Engineering Mechanics Conference: Proceedings of the 16th ASCE Eng. Mechanics Conf. Seattle, 16 (2003).

  29. G. Belingardi, M. P. Cavatorta, and D. Salvatore Paolino, Intr. J. Impact Eng., 35, 609 (2008).

    Article  Google Scholar 

  30. S. Ranganathan and P. R. Mantena, J. Reinf. Plast. Compos., 22, 671 (2003).

    Article  CAS  Google Scholar 

  31. N. Fleck, P. Jelf, and P. Curtis, J. Compos. Tech. Res., 17, 212 (1995).

    Article  CAS  Google Scholar 

  32. P. Jelf and N. Fleck, J. Compos. Mater., 26, 2706 (1992).

    Article  CAS  Google Scholar 

  33. C. Gonzalez and J. Lorca, Compos. Sci. Tech., 67, 2795 (2007).

    Article  CAS  Google Scholar 

  34. F. M. Jensen, B. Falzon, J. Ankersen, and H. Stang, Compos. Struct., 76, 52 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by the Department of Education and Knowledge (ADEK), Abu Dhabi, United Arab Emirates and the University of Southern Queensland, Australia. The authors gratefully acknowledge to Dr. Mainul Islam, Ali Naim Khurshid and Wayne Crowell for providing helpful suggestions regarding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mazedul Kabir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, M.M., Al-Haik, M.Y., Aldajah, S.H. et al. Impact Properties of the Chemically Treated Hemp Fibre Reinforced Polyester Composites. Fibers Polym 21, 2098–2110 (2020). https://doi.org/10.1007/s12221-020-9630-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9630-4

Keywords

Navigation