Skip to main content
Log in

Soft High-Loading TiO2 Composite Biomaterial Film as an Efficient and Recyclable Catalyst for Removing Methylene Blue

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Currently, the preparation of novel efficient and recyclable photocatalysts for pollutant degradation in water has become a research hotpot. In this study, a TiO2-loaded non-woven polypropylene/bacterial cellulose (TiO2-loaded NPBC) composite film was prepared by a biological culturing method. The TiO2 nanoparticles were spontaneously embedded into the prepared composite film. Then, the composite film was used to degrade methylene blue (MB) and its degradation effects were explored. The morphology of the composite film was investigated. It was clear that a large amount of TiO2 nanoparticles were embedded into the composite membrane during the biological culturing method. The experimental results confirmed that the TiO2-loaded NPBC composite film had good degradation performance and reusability. When the reaction time was 120 min, the removal rate of MB by the film was 92.8 %. The removal rate remained above 85 % after 5 degradation cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ramazani, M. Oveisi, M. Sheikhi, and F. Gouranlou, Curr. Org. Chem., 13, 1298 (2018).

    Google Scholar 

  2. L. C. Castillo-Carvajal, J. L. Sanz-Martin, and B. E. Barragan-Huerta, Environ. Sci. Pollut. Res., 16, 9580 (2014).

    Google Scholar 

  3. J. Infant, S. Aishwarya, and T. Sivakumar, J. Nanosci. Nanotechnol., 19, 2575 (2019).

    Article  Google Scholar 

  4. L. Carmine, A. Ancona, and K. Cesare, Appl. Catal., B, 243, 632 (2019).

    Google Scholar 

  5. Y. Qu and X. Duan, Chem. Soc. Rev., 42, 2569 (2013).

    Article  Google Scholar 

  6. D. Gao, N. Liu, W. Li, and Y. Han, Appl. Organomet. Chem., 3, 2 (2018).

    Google Scholar 

  7. A. Khalil, N. Aboamerab, W. Nasserc, W. Mahmoudd, and G. Mohamed, Sep. Sci. Technol., 224, 510 (2019).

    Google Scholar 

  8. M. Mohameda, W. A. Bayoumya, T. Y. Mansour El-Ashkar, M. E. Goher, and M. H. Abho, J. Environ. Chem. Eng., 7, 102884 (2019).

    Article  Google Scholar 

  9. D. Huang, Z. Mo, and S. Quan, Acta Mater., 33, 155 (2016).

    CAS  Google Scholar 

  10. Z. Wang, Y. Li, and B. Liu, J. Synth. Cryst., 45, 2640 (2016).

    Google Scholar 

  11. D. Zhao, Y. Wang, and Z. Han, Rare Metal Mat. Eng., 44, 608 (2016).

    Google Scholar 

  12. J. Miao, F. Zeng, and L. Guan, Acta Photonica Sinica, 47, 101 (2018).

    Google Scholar 

  13. J. Gutierrez, A. Tercjak, and I. Algar, J. Collold Interf. Sci., 47, 100 (2018).

    Google Scholar 

  14. Q. Feng, Y. Qian, and S. Huan, J. Donghua Uni. Natural Sci., 44, 30 (2018).

    Google Scholar 

  15. G. Li, A. G. Nandgaonkar, and Q. Wang, J. Membrane Sci., 525, 89 (2017).

    Article  CAS  Google Scholar 

  16. J. Wua, Y. Zheng, W. Song, J. Luan, and X. Wen, Carbohydr. Polym., 102, 764 (2014).

    Google Scholar 

  17. L. Chen, M. Zou, and F. Hong, Front. Microblol., 6, 3 (2015).

    Google Scholar 

  18. R. Brandes, E. Trindade, D. Vanin, and V. Vargas, Fiber. Polym., 19, 1862 (2018).

    Google Scholar 

  19. A. Khalid, H. Ullah, and M. Ul-Islam, RSC Adv., 7, 47662 (2017).

    Article  CAS  Google Scholar 

  20. Z. Zhu, X. Li, and D. Wu, J. Anhui Uni. Eng., 32, 28 (2017).

    Google Scholar 

  21. J. Huang, P. Lv, and Y. Yao, J. Text. Res., 39, 127 (2018).

    Google Scholar 

  22. F. Ye, L. Li, and L. Zhang, ACS Appl. Mater. Interfaces, 6, 5106 (2014).

    Google Scholar 

  23. C. Zhou, Y. Li, and Y. Ma, J. Text. Res., 39, 91 (2018).

    Google Scholar 

  24. K. Ao, D. Li, and Y. Yao, Chin. J. Mater. Res., 32, 157 (2018).

    Google Scholar 

  25. J. Feng, Y. Duan, and Y. Jiao, Acta Phys-Chim. Sin., 12, 1433 (2005).

    Google Scholar 

  26. M. Kheirabadi, M. Samadi, E. Asadian, Y. Zhou, C. Dong, J. Zhang, and A. Z. Moshfegh, J. Colloid Interface Sci., 537, 70 (2019).

    Article  Google Scholar 

  27. A. Uheida, A. Mohamed, M. Belaqziz, and W. S. Nasser, Sep. Purif. Technol., 212, 111 (2019).

    Article  Google Scholar 

  28. X. Wang, Y. Sun, L. Yang, Q. Shang, D. Wang, T. Guo, and Y. Guo, Sci. Total Environ., 656, 1011 (2019).

    Google Scholar 

  29. G. Zhang, D. Wang, J. Yan, Y. Xiao, W. Fu, and C. Zang, Materials, 12, 5 (2019).

    Google Scholar 

  30. K. Paul, R. Ghosh, and P. Giri, Nanotechnology, 27, 11 (2016).

    Google Scholar 

  31. Z. Kadirova, M. Hojamberdiev, K. Katsumata, T. Isobe, N. Matsushita, A. Nakajima, and K. Okada, Environ. Sci. Pollut. Res, 21, 4314 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the International Cooperation Project of Anhui Province in China (1604b0602024), “Textile fabric” key Laboratory of Anhui University and Opening Fund Project of Anhui Textile Engineering Technology Research Center (KZ00418043). The authors are thankful for the support from the Department of Education in Anhui Province of China (KJ2016SD04 and 2015LJRCTD001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Wu, D., Feng, Q. et al. Soft High-Loading TiO2 Composite Biomaterial Film as an Efficient and Recyclable Catalyst for Removing Methylene Blue. Fibers Polym 21, 1760–1766 (2020). https://doi.org/10.1007/s12221-020-9543-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9543-2

Keywords

Navigation