Skip to main content
Log in

Effect of Reactive Dye Structures and Substituents on Cellulose Fabric Dyeing

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Traditional dyeing of cotton fabrics with reactive dyes has produced many environmental problems. Therefore, it is important to investigate the relationship between dye molecular structures and dyeing properties for cleaner procedures. Here, the properties of five azo-based reactive dyes with different substituents and reactive groups were studied. The dyes had similar molecular shapes, sizes, and chromophore structures. Differences were in the aromatic rings, the number of sulfonate groups, and the position of vinyl sulfonate on the benzene ring. The dye substantivity (S%), exhaustion (E%), reactivity (R%), fixation (F%), color strength, salt effects, alkali effects, and color fastness were investigated and analyzed. Different substituents on the dyes had a little effect on the ultraviolet-visible absorption maximum wavelength. In addition, the requirements of salt and alkali to produce the maximum color strength varied for different dye structures. The dye containing a naphthalene ring, three sulfonate groups, and a vinyl sulfonate at the para-position of the benzene ring produced the highest color strength and fixation values. Color fastness was almost the same for each dyed sample, except for the wet-rubbing fastness. The results should be useful for developing new dyes and environmentally friendly dyeing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Široký, R. S. Blackburn, T. Bechtold, J. Taylor, and P. White, Carbohydr. Polym., 84, 299 (2011).

    Article  Google Scholar 

  2. A. Shindy, Chem. Int., 3, 97 (2017).

    Google Scholar 

  3. S. Papić, N. Koprivanac, A. L. Bozic, and A. Meteš, Dyes Pigm., 62, 291 (2004).

    Article  Google Scholar 

  4. B. Tang, S. Zhang, J. Yang, Y Tang, and J. Huang, Color. Technol., 120, 180 (2006).

    Article  Google Scholar 

  5. K. Morris, D. Lewis, and P. Broadbent, Color. Technol., 124, 186 (2008).

    Article  CAS  Google Scholar 

  6. T. Suwanich and P. Chutima, IOP Conf. Series: Materials Science and Engineering, 215, 012206 (2017). doi:https://doi.org/10.1088/1757-899X/215/1/012006

    Google Scholar 

  7. K. Bredereck and C. Schumacher, Dyes Pigm., 21, 23 (1993).

    Article  CAS  Google Scholar 

  8. M. Irfan, H. Zhang, U. Syed, and A. Hou, J. Cleaner Prod., 197, 1480 (2018).

    Article  CAS  Google Scholar 

  9. U. H. Siddiqua, S. Ali, T. Hussain, and H. N. Bhatti, Pol. J. Environ. Stud., 26, 2215 (2017).

    Article  Google Scholar 

  10. K. Swaminathan, K. Pachhade, and S. Sandhya, Desalination, 186, 155 (2005).

    Article  CAS  Google Scholar 

  11. T. Pálfi, E. Takács, and L. Wojnárovits, Water Res., 41, 2533 (2007).

    Article  Google Scholar 

  12. W. Zhu, Z. Yang, and L. Wang, Water Res., 30, 2949 (1996).

    Article  CAS  Google Scholar 

  13. C. Y. Zhong, A. H. Xu, B. Y. Wang, X. H. Yang, W. T. Hong, B. K. Yang, C. H. Chen, H. T. Liu, and J. G. Zhou, Colloids Surf., B, 122, 583 (2014).

    Article  CAS  Google Scholar 

  14. J. A. Taylor, Color. Technol., 30, 93 (2000).

    Article  CAS  Google Scholar 

  15. S. Chinta and S. VijayKumar, Int. J. Eng. Manage. Sci., 4, 308 (2013).

    Google Scholar 

  16. S. Burkinshaw and M. Paraskevas, Dyes Pigm, 88, 212 (2011).

    Article  CAS  Google Scholar 

  17. A. Soleimani-Gorgani and J. Taylor, Dyes Pigm., 68, 109 (2006).

    Article  CAS  Google Scholar 

  18. A. Soleimani-Gorgani and J. Taylor, Dyes Pigm., 68, 119 (2006).

    Article  CAS  Google Scholar 

  19. K. Xie, A. Gao, M. Li, and X. Wang, Carbohydr. Polym., 101, 666 (2014).

    Article  CAS  Google Scholar 

  20. U. H. Siddiqua, S. Ali, M. Iqbal, and T. Hussain, J. Mol. Liq., 241, 839 (2017).

    Article  CAS  Google Scholar 

  21. J. Hamlin, D. Phillips, and A. Whiting, Dyes Pigm., 41, 137 (1999).

    Article  CAS  Google Scholar 

  22. M. Hehlen, Text. Chem. Color., 10, 21 (1991).

    Google Scholar 

  23. H. Zhang, H. Yang, K. Xie, A. Hou, and A. Gao, Dyes Pigm., 159, 576 (2018).

    Article  CAS  Google Scholar 

  24. A. K. Verma, R. R. Dash, and P. Bhunia, J. Environ. Manage., 93, 154 (2012).

    Article  CAS  Google Scholar 

  25. S. J. Allen and B. Koumanova, J. Univ. Chem. Technol. Metall., 40, 175 (2005).

    CAS  Google Scholar 

  26. P. V. Nidheesh, R. Gandhimathi, and S. T. Ramesh, Environ. Sci. Pollut. Res., 20, 2099 (2013).

    Article  CAS  Google Scholar 

  27. M. Nakahara, “The Science of Color”, Baifukan, 2002.

  28. M. Montazer, R. Malek, and A. Rahimi, Fiber. Polym., 8, 608 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiqin Hou.

Additional information

Acknowledgments

This work was financially supported by the National Key R&D Program of China (Grant No. 2017YFB0309600), and Shanghai Natural Science Foundation (Grant No. 18ZR1400800). We thank Alan Burns, PhD, from the Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, M., Xie, K. & Hou, A. Effect of Reactive Dye Structures and Substituents on Cellulose Fabric Dyeing. Fibers Polym 21, 2018–2023 (2020). https://doi.org/10.1007/s12221-020-9472-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9472-0

Keywords

Navigation