Skip to main content
Log in

Tunable Electrical Resistivity of Carbon Nanotube Filled Phase Change Material Via Solid-solid Phase Transitions

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Thermo-responsive materials can be used in temperature sensing systems. In this study, we demonstrated a carbon nanotube (CNT) incorporated form-stable phase change material (FSPCM) that exhibits variation of electrical resistivity in over three orders of magnitude during phase transition. The electrical resistivity was manipulated by the volume change induced by the thermal energy due to the phase transformation. The phase change material (PCM) was encapsulated by polyaniline (PANI) and the solid state of the microcapsule was maintained during the melting and cooling processes. The form-stable microcapsules underwent volume expansion and shrinkage with respect to the temperature. Thus, the thermal expansion coefficient is related to the temperature variation and volume change of PCM capsules. The CNT embedded phase change material (PCM) showed remarkable electrical reversibility and thermal stability in the melting/cooling cycles. We expect that the CNT/PCM nanocomposite can be successfully applied to flexible electronics and thermal sensing probes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. Umair, Y. Zhang, K. Iqbal, S. Zhang, and B. Tang, Applied Energy, 235, 846 (2019).

    Article  CAS  Google Scholar 

  2. R. Wen, P. Jia, Z. Huang, M. Fang, Y. Liu, X. Wu, X. Min, and W. Gao, J. Therm. Anal. Calorim., 132, 1753 (2018).

    Article  CAS  Google Scholar 

  3. D. K. Döğüşcü, Y. Damlıoğlu, and C. Alkan, Sol. Energy Mater. Sol. Cells, 198, 5 (2019).

    Article  CAS  Google Scholar 

  4. H. K. Lakeh, H. Kaatuzian, and R. Hosseini, Renewable Energy, 138, 542 (2019).

    Article  Google Scholar 

  5. P. K. Pandis, S. Papaioannou, M. K. Koukou, M. G. Vrachopoulos, and V. N. Stathopoulos, Energy Procedia, 161, 429 (2019).

    Article  CAS  Google Scholar 

  6. H. Ji, D. P. Sellan, M. T. Pettes, X. Kong, J. Ji, L. Shi, and R. S. Ruoff, Energy Environ. Sci., 7, 1185 (2014).

    Article  CAS  Google Scholar 

  7. T. Ma, H. L. Gao, H. P. Cong, H. B. Yao, L. Wu, Z. Y. Yu, S. M. Chen, and S. H. Yu, Adv. Mater., 30, 1706435 (2018).

    Article  CAS  Google Scholar 

  8. Y. Wang, H. Mi, Q. Zheng, Z. Ma, and S. Gong, ACS Appl. Mater. Interfaces, 7, 21602 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. C. Yu, J. R. Youn, and Y. S. Song, Fiber. Polym., 20, 545 (2019).

    Article  CAS  Google Scholar 

  10. Y. Wang, H. Mi, Q. Zheng, Z. Ma, and S. Gong, ACS Appl. Mater. Interfaces, 7, 2641 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. R. Cao, Y. Wang, S. Chen, N. Han, H. Liu, and X. Zhang, ACS Appl. Mater. Interfaces, 11, 8982 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. H. Liu, X. Wang, D. Wu, and S. Ji, Sol. Energy Mater. Sol. Cells, 193, 184 (2019).

    Article  CAS  Google Scholar 

  13. W. Wu, W. Wu, and S. Wang, Applied Energy, 236, 10 (2019).

    Article  CAS  Google Scholar 

  14. M. S. Horpan, N. Şahan, H. Paksoy, O. Sivrikaya, and M. Günes, Sol. Energy Mater. Sol. Cells, 195, 346 (2019).

    Article  CAS  Google Scholar 

  15. P. Lv, M. Ding, C. Liu, and Z. Rao, Renewable Energy, 131, 911 (2019).

    Article  CAS  Google Scholar 

  16. F. Cheng, X. Zhang, R. Wen, Z. Huang, M. Fang, Y. G. Liu, X. Wu, and X. Min, Appl. Therm. Eng., 156, 653 (2019).

    Article  CAS  Google Scholar 

  17. M. E. Darzi, S. I. Golestaneh, M. Kamali, and G. Karimi, Renewable Energy, 135, 719 (2019).

    Article  CAS  Google Scholar 

  18. A. Sarı, A. Bicer, A. Karaipekli, and F. Al-Sulaiman, Sol. Energy Mater. Sol. Cells, 174, 523 (2018).

    Article  CAS  Google Scholar 

  19. N. Şahan and H. Paksoy, Sol. Energy Mater. Sol. Cells, 174, 380 (2018).

    Article  CAS  Google Scholar 

  20. G.-Q. Qi, C.-L. Liang, R.-Y. Bao, Z.-Y. Liu, W. Yang, B.-H. Xie, and M.-B. Yang, Sol. Energy Mater. Sol. Cells, 123, 171 (2014).

    Article  CAS  Google Scholar 

  21. H. Hong, Y. Pan, H. Sun, Z. Zhu, C. Ma, B. Wang, W. Liang, B. Yang, and A. Li, Sol. Energy Mater. Sol. Cells, 174, 307 (2018).

    Article  CAS  Google Scholar 

  22. J. Yang, L.-S. Tang, R.-Y. Bao, L. Bai, Z.-Y. Liu, B.-H. Xie, M.-B. Yang, and W. Yang, Sol. Energy Mater. Sol. Cells, 174, 56 (2018).

    Article  CAS  Google Scholar 

  23. J. Li, P. Xue, W. Ding, J. Han, and G. Sun, Sol. Energy Mater. Sol. Cells, 93, 1761 (2009).

    Article  CAS  Google Scholar 

  24. C. Alkan and A. Sari, Solar Energy, 82, 118 (2008).

    Article  CAS  Google Scholar 

  25. J. Su, L. Wang, and L. Ren, J. Appl. Polym. Sci., 101, 1522 (2006).

    Article  CAS  Google Scholar 

  26. T. Wang, S. Wang, R. Luo, C. Zhu, T. Akiyama, and Z. Zhang, Applied Energy, 171, 113 (2016).

    Article  CAS  Google Scholar 

  27. Z. Jiang, W. Yang, F. He, C. Xie, J. Fan, J. Wu, and K. Zhang, Langmuir, 34, 14254 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Y. Konuklu, M. Unal, and H. O. Paksoy, Sol. Energy Mater. Sol. Cells, 120, 536 (2014).

    Article  CAS  Google Scholar 

  29. S. Ye, Q. Zhang, D. Hu, and J. Feng, J. Mater. Chem. A, 3, 4018 (2015).

    Article  CAS  Google Scholar 

  30. Y. Wang, H. Ji, H. Shi, T. Zhang, and T. Xia, Energy Convers. Manag., 98, 322 (2015).

    Article  CAS  Google Scholar 

  31. J.-L. Zeng, F.-R. Zhu, S.-B. Yu, Z.-L. Xiao, W.-P. Yan, S.-H. Zheng, L. Zhang, L.-X. Sun, and Z. Cao, Sol. Energy Mater. Sol. Cells, 114, 136 (2013).

    Article  CAS  Google Scholar 

  32. Y. Wang, B. Tang, and S. Zhang, Adv. Funct. Mater., 23, 4354 (2013).

    Article  CAS  Google Scholar 

  33. A. M. Mazrouaa, N. A. Mansour, M. Y. Abed, M. A. Youssif, M. Shenashen, and M. R. Awual, J. Environ. Chem. Eng., 103002 (2019).

    Google Scholar 

  34. W. Zhou, T. Yamaguchi, K. Kikuchi, N. Nomura, and A. Kawasaki, Acta Materialia, 125, 369 (2017).

    Article  CAS  Google Scholar 

  35. R. Rakhi in “Nanocarbon and its Composites”, p.489, Elsevier, 2019.

    Book  Google Scholar 

  36. B. Peng, Y. Jiang, and A. Zhu, Polymer Testing, 74, 72 (2019).

    Article  CAS  Google Scholar 

  37. T. Huang, J.-L. Li, J.-H. Yang, N. Zhang, Y. Wang, and Z.-W. Zhou, Compos. Part B: Eng., 133, 177 (2018).

    Article  CAS  Google Scholar 

  38. E. Zelikman, M. Narkis, A. Siegmann, L. Valentini, and J. Kenny, Polym. Eng. Sci., 48, 1872 (2008).

    Article  CAS  Google Scholar 

  39. H. Xia and Q. Wang, Chem. Mater., 14, 2158 (2002).

    Article  CAS  Google Scholar 

  40. J. Wu and D. McLachlan, Phys. Rev. B, 56, 1236 (1997).

    Article  CAS  Google Scholar 

  41. E. Ancona and R. Y. Kezerashvili, Acta Astronaut., 140, 565 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by GRRC program of Gyeonggi Province (GRRC Dankook2016-B03). In addition, this research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07049173) and by the Korea government (MSIT) (No. NRF-2018R1A5A1024127). The authors are grateful for the supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae Ryoun Youn or Young Seok Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Youn, J.R. & Song, Y.S. Tunable Electrical Resistivity of Carbon Nanotube Filled Phase Change Material Via Solid-solid Phase Transitions. Fibers Polym 21, 24–32 (2020). https://doi.org/10.1007/s12221-020-9468-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-9468-9

Keywords

Navigation