Skip to main content
Log in

Impact Resistance and Comfort Properties of Textile Structures for Sportswear

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Protective padding is commonly used in many sporting activities to prevent impact related injuries. In rugby, shoulder pads absorb and disperse the force and energy of an impact with a playing surface or another player. Although the majority of the commercial shoulder pads currently available can reduce the impact force during a front-on tackle, they provide limited amount of thermal comfort to the wearer. In this research, flexible textile structures were designed and investigated for their potential to effectively dissipate the force of impact over a wider area, thus reducing the risk of injury. The impact resistance of these textile structures placed over a body simulant was compared against commercial foam pads using a’ drop test’ method. The results indicated that all the flexible textile structures reduced the impact force. Although their protection level was not as high as the commercial foam, the textile structures showed a higher level of thermal comfort as measured by air permeability, thermal resistance and water vapor resistance. The results were analyzed using oneway ANOVA followed by post-hoc analysis using IBM SPSS software. The Post-hoc analysis showed a significant difference among the test results of various fabrics for impact absorption, air permeability, thermal resistance and water vapor resistance, which are also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Shishoo, “Textiles in Sport” Woodhead Publishing Ltd., Cambridge England, 2005.

    Book  Google Scholar 

  2. J. Miltz and G. Gruenbaum, Polym. Eng. Sci., 21, 1010 (1981).

    Article  CAS  Google Scholar 

  3. G. Gruenbaum and J. Miltz, J. Appl. Polym. Sci., 28, 135 (1983).

    Article  CAS  Google Scholar 

  4. O. Ramon, S. Mizrahi, and J. Miltz, Polym. Eng. Sci., 34, 1406 (1994).

    Article  CAS  Google Scholar 

  5. S. Dlugosch, H. Hong, and C. K. C. Allan, Res. J. Text. Appa., 16, 18 (2012).

    Article  Google Scholar 

  6. Y. Liu, H. Hu, H. Long, and L. Zhao, Text. Res. J., 82, 773 (2012).

    Article  CAS  Google Scholar 

  7. Y. Liu, W. M. Au, and H. Hu, Text. Res. J., 84, 422 (2014).

    Article  CAS  Google Scholar 

  8. J. H. M. Brooks, C. W. Fuller, S. P. T. Kemp, and D. B. Reddin, Brit. J. Sports Med., 39, 757 (2005).

    Article  CAS  Google Scholar 

  9. J. Yip and S.-P. Ng, J. Mat. Proc. Technol., 206, 359 (2008).

    Article  CAS  Google Scholar 

  10. X. Chen, M. Spola, J. G. Paya, and P. M. Sellabona, J. Text. Inst., 90, 91 (1999).

    Article  Google Scholar 

  11. X. Chen and D. Yang, Text. Res. J., 80, 1581 (2010).

    Article  CAS  Google Scholar 

  12. B. N. Cox, M. S. Dadkhah, R. V. Inman, W. L. Morris, and J. Zupon, Acta Metal. Mater., 40, 3285 (1992).

    Article  CAS  Google Scholar 

  13. B. Sun and B. Gu, J. Comp. Mat., 41, 2915 (2007).

    Article  Google Scholar 

  14. P. Tan, L. Tong, and G. P. Steven, Compos. Part A-Appl. Sci. Manuf., 30, 637 (1999).

    Article  Google Scholar 

  15. R. Nayak, S. Kanesalingam, A. Vijayan, L. Wang, R. Padhye, and L. Arnold, KnE Eng., 2, 127 (2017).

    Article  Google Scholar 

  16. D. Bhattacharjee, A. Kumar, and I. Biswas, Def. Sci. J., 63, 462 (2013).

    Article  Google Scholar 

  17. J. Usman, A. S. McIntosh, and B. Fréchède, J. Sci. Med. Spo., 14, 547 (2011).

    Article  Google Scholar 

  18. J. Yip, K. Chan, K. M. Sin, and K. S. Lau, J. Mat. Proc. Technol., 123, 5 (2002).

    Article  CAS  Google Scholar 

  19. J. Hu, Y. Li, K.-W. Yeung, A. S. W. Wong, and W. Xu, Text. Res. J., 75, 57 (2005).

    Article  CAS  Google Scholar 

  20. J. Hu, “Tabric Testing” CRC Press, Woodhead Publications, Cambridge, UK, 2008.

    Book  Google Scholar 

  21. R. Nayak, S. Punj, K. Chatterjee, and B. Behera, Ind. J. Fib. Text. Res., 34, 122 (2009).

    CAS  Google Scholar 

  22. R. Nayak, S. Kanesalingam, S. Houshyar, A. Vijayan, L. Wang, and R. Padhye, Fiber. Polym., 17, 954 (2016).

    Article  CAS  Google Scholar 

  23. R. Nayak, S. Houshyar, and R. Padhye, Fire Sci. Rev., 3, 4 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkishore Nayak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, R., Kanessalingam, S., Vijayan, A. et al. Impact Resistance and Comfort Properties of Textile Structures for Sportswear. Fibers Polym 21, 2147–2159 (2020). https://doi.org/10.1007/s12221-020-7739-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-7739-0

Keywords

Navigation