Skip to main content
Log in

Fabrication and Characterization of Moisture Slow-releasing Embroidered Electrode and ECG Monitoring Belt

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The microenvironmental humidity at the interface between the bioelectrical electrode and the human skin can affect the quality of the bioelectrical signal collected by the electrode. This paper utilized superabsorbent polyacrylic fiber as the base material to fabricate a novel moisture slow-releasing embroidered electrode. The moisture-locking capacity of polyester non-woven fabric (PENWF) substrate, polyacrylic non-woven fabric (PANWF) substrate, polyester-based electrode (PE-E) and polyacrylic-based electrode (PA-E) were compared in this paper. The non-woven fabric with polyacrylic fiber owned excellent moisture-locking capacity, so it could realize the slow-releasing of moisture and provide a suitable wet environment for the dry bioelectric electrode to collect ECG signals. With the extension of time, the amplitude of the ECG signal collected by PA-E did not change much, and only decreased by 17.1 % after evaporating for 10 h; but after evaporating for 10 h, the amplitude of the ECG signal collected by the PE-E decreased by 48.9 %. In addition, 5 mm, 10 mm, and 15 mm thick polyurethane sponge (PUS) filling materials were used to make the ECG monitoring belts, and their signal-to-noise ratios were analyzed under different states of static, swinging arms and walking. The 5 mm thick elastic filler material has the highest signal-to-noise ratio among the three thicknesses. It could collect ECG signals stably under swing arm and walking at a constant speed, and the signal-to-noise ratio (SNR) were 25.393 dB and 30.086 dB respectively. The polyurethane sponge filling materials with a thickness of 5 mm provided an appropriate pre-stress for the ECG signal dynamic measurement, which could provide a reference parameter for the production of smart ECG garment in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Nawrocki, H. Jin, S. Lee, T. Yokota, M. Sekino, and T. Someya, Adv. Funct. Mater., 28, 1803279 (2018).

    Article  Google Scholar 

  2. J. Jung, S. Shin, and Y. T. Kim, Microelectron. Eng., 203–204, 25 (2019).

    Article  Google Scholar 

  3. P. Tallgren, S. Vanhatalo, K. Kaila, and J. Voipio, Clin. Neurophysiol., 116, 799 (2005).

    Article  CAS  Google Scholar 

  4. P. Fiedler, S. Griebel, P. Pedrosa C. Fonseca, F. Vaz, L. Zentner, F. Zanow, and J. Haueisen, Sens. Actuators A: Phys., 221, 139 (2015).

    Article  CAS  Google Scholar 

  5. D. Hu, T. Cheng, K. Xie, and R. Lam, Sensors, 15, 26906 (2015).

    Article  Google Scholar 

  6. C. Luo, W. Ma, W. Juang, S. Kuo, C. Chen, P. Tai, and S. Lai, IEEE Sens. J., 16, 8244 (2016).

    Google Scholar 

  7. P. Pedrosa, P. Fiedler, C. Lopes, E. Alves, N. P. Barradas, J. Haueisen, A. V. Machado, C. Fonseca, and F. Vaz, Plasma Process. Polym., 13, 341 (2016).

    Article  CAS  Google Scholar 

  8. D. Pani, A. Dessi, J. F. Saenz-Cogollo, G. Barabino, B. Fraboni, and A. Bonfiglio, IEEE Trans. Biomed. Eng., 63, 540 (2016).

    Article  Google Scholar 

  9. M. A. Yokus and J. S. Jur, IEEE Trans. Biomed. Eng., 63, 423 (2016).

    Article  Google Scholar 

  10. P. S. Das, M. F. Hossain, and J. Y. Park, Microelectron. Eng., 180, 45 (2017).

    Article  CAS  Google Scholar 

  11. H. L. Peng, J. Q. Liu, Y. Dong, B. Yang, X. Chen, and C. Yang, Sens. Actuators B: Chem., 231, 1 (2016).

    Article  CAS  Google Scholar 

  12. X. An and G. K. Stylios, Materials, 11, 1887 (2018).

    Article  Google Scholar 

  13. L. Beckmann, C. Neuhaus, G. Medrano, N. Jungbecker, M. Walter, T. Gries, and S. Leonhardt, Physiol. Meas., 31, 233 (2010).

    Article  CAS  Google Scholar 

  14. M. Yapici and T. Alkhidir, Sensors, 17, 875 (2017).

    Article  Google Scholar 

  15. L. Wang, J. Liu, X. Yan, B. Yang, and C. Yang, Microsyst. Technol, 19, 269 (2013).

    Article  Google Scholar 

  16. W. Pei, H. Zhang, Y. Wang, X. Guo, X. Xing, Y. Huang, Y. Xie, X. Yang, and H. Chen, IEEE Trans. Biomed. Eng., 64, 463 (2017).

    Article  Google Scholar 

  17. H. Zhang, W. Pei, Y. Chen, X. Guo, X. Wu, X. Yang, and H. Chen, IEEE Trans. Biomed. Eng., 63, 1136 (2016).

    Article  Google Scholar 

  18. P. Griss, P. Enoksson, H. K. Tolvanen-Laakso, P. Merilainen, S. Ollmar, and G. Stemme, J. Microelectromech. Syst., 10, 10 (2001).

    Article  Google Scholar 

  19. L. Hsu, S. Tung, C. Kuo, and Y. Yang, Sensors, 14, 12370 (2014).

    Article  CAS  Google Scholar 

  20. S. Rajaraman, J. A. Bragg, J. D. Ross, and M. G. Allen, J. Micromech. Microeng., 21, 085014 (2011).

    Article  Google Scholar 

  21. B. Alizadeh-Taheri, R. L. Smith, and R. T. Knight, Sens. Actuators A: Phys., 54, 606 (1996).

    Article  CAS  Google Scholar 

  22. T. R. Mullen, C. A. E. Kothe, Y. M. Chi, A. Ojeda, T. Kerth, S. Makeig, T. Jung, and G. Cauwenberghs, IEEE Trans. Biomed. Eng., 62, 2553 (2015).

    Article  Google Scholar 

  23. M. Fatoorechi, J. Parkinson, R. J. Prance, H. Prance, A. K. Seth, and D. J. Schwartzman, J. Neurosci. Methods, 251, 7 (2015).

    Article  CAS  Google Scholar 

  24. L. Jin, K. J. Kim, E. H. Song, Y. J. Ahn, Y. J. Jeong, T. I. Oh, and E. J. Woo, RSC Adv., 6, 40045 (2016).

    Article  CAS  Google Scholar 

  25. A. R. Mota, L. Duarte, D. Rodrigues, A. C. Martins, A. V. Machado, F. Vaz, P. Fiedler, J. Haueisen, J. M. Nóbrega and C. Fonseca, Sens. Actuators A: Phys., 199, 310 (2013).

    Article  CAS  Google Scholar 

  26. L. M. Yu, F. E. H. Tay, D. G. Guo, L. Xu, and K. L. Yap, Sens. Actuators A: Phys., 151, 17 (2009).

    Article  CAS  Google Scholar 

  27. G. Li, D. Zhang, S. Wang, and Y. Duan, Sens. Actuators B: Chem, 237, 167 (2016).

    Article  CAS  Google Scholar 

  28. J. Moon, D. H. Baek, Y. Y. Choi, K. H. Lee, H. C. Kim, and S. Lee, J. Micromech. Microeng., 20, 25032 (2010).

    Article  Google Scholar 

  29. H. Liu, X. Tao, P. Xu, H. Zhang, and Z. Bai, Measurement, 46, 1904 (2013).

    Article  Google Scholar 

  30. H. Liu, D. Tang, Y. Hu, L. Xu, J. Song, W. Wang, and B. Cheng, Appl. Phys. A, 125, 501 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Ma, M., Tang, D. et al. Fabrication and Characterization of Moisture Slow-releasing Embroidered Electrode and ECG Monitoring Belt. Fibers Polym 21, 3000–3008 (2020). https://doi.org/10.1007/s12221-020-1322-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1322-6

Keywords

Navigation