Skip to main content
Log in

Crystallization and Mechanical Properties of Glass Fiber Reinforced Polypropylene Composites Molded by Rapid Heat Cycle Molding

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The crystalline behavior and mechanical properties of PP/GF (glass fibers) composites molded by rapid heat cycle molding (RHCM) and conventional injection molding (CIM) were compared. SEM, DSC and XRD were utilized to study crystallization behavior of PP and PP/GF composites. Furthermore, universal testing machine was employed to investigate the mechanical properties. Results proved that higher degree of crystallinity and larger crystal size can be obtained in RHCM in comparison to CIM. GF can induce more crystal nuclei and then reduce the crystal size due to shear stress which is generated in polymer matrix around fibers. Nucleating agent (NA) has a positive effect on refine grains. The average crystal diameter of PP/NA/30 %GF is about 1.7 µm which is one-tenth of PP/30 %GF (14 µm) in RHCM. XRD tests illustrated that α-form crystal is the main crystal type for PP and PP/GF composites in RHCM and CIM. However, there is a little β-form crystal in RHCM for PP/GF composites without NA. NA accelerates the formation of α-form crystal and restrains the emergence of β-form crystal. The plastic parts obtained in RHCM exhibited higher strength and modulus compared with that obtained in CIM for both tensile and flexural tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Kim, W. Jang, J. Kim, C. W. Chung, Y. H. Park, and S. Choe, Polym. Korea, 25, 855 (2001).

    CAS  Google Scholar 

  2. G. Wang, Y. Hui, L. Zhang, and G. Zhao, Int. J. Heat Mass Transfer, 116, 1192 (2018).

    Article  Google Scholar 

  3. M. Chen, D. G. Yao, and B. Kim, Polym. Plast. Technol. Eng., 40, 491 (2001).

    Article  CAS  Google Scholar 

  4. D. G. Yao and B. Kim, Polym-Plast. Technol., 41, 819 (2002).

    Article  Google Scholar 

  5. G. Wang, G. Zhao, H. Li, and Y. Guan, Mater. Des., 31, 3426 (2010).

    Article  Google Scholar 

  6. G. Zhao, G. Wang, Y. Guan, and H. Li, Polym. Adv. Technol., 22, 476 (2011).

    Article  CAS  Google Scholar 

  7. G. Wang, G. Zhao, H. Li, and Y. Guan, Polym. Plast. Technol. Eng., 48, 671 (2009).

    Article  CAS  Google Scholar 

  8. S. C. Chen, Y. C. Wang, S. C. Liu, and J. C. Cin, Sens. Actuators A, 151, 87 (2009).

    Article  CAS  Google Scholar 

  9. Z. Shayfull, S. Sharif, A. M. Zain, M. F. Ghazali, and R. M. Saad, Adv. Polym. Technol., 33, 21381 (2014).

    Article  Google Scholar 

  10. G. Wang, G. Zhao, and Y. Guan, J. Appl. Polym. Sci., 128, 1339 (2013).

    CAS  Google Scholar 

  11. W. Wang, G. Zhao, Y. Guan, X. Wu, and Y. Hui, J. Polym. Res., 22, 84 (2015).

    Article  CAS  Google Scholar 

  12. J. Vera, A. C. Brulez, E. Contraires, M. Larochette, N. Trannoy-Orban, M. Pignon, C. Mauclair, S. Valette, and S. Benayoun, J. Micromech. Microeng., 28, 015004 (2018).

    Article  Google Scholar 

  13. S. Meister, A. Seefried, and D. Drummer, Microsyst. Technol., 22, 687 (2016).

    Article  Google Scholar 

  14. X. Zhou, J. F. Feng, D. Cheng, J. J. Yi, and L. Wang, Polymer, 54, 4719 (2013).

    Article  CAS  Google Scholar 

  15. X. Zhou, J. C. Feng, J. J. Yi, and L. Wang, Mater. Des., 49, 502 (2013).

    Article  CAS  Google Scholar 

  16. J. Q. Li, Z. Zhu, T. D. Li, X. Peng, S. F. Jiang, and L. S. Turng, J. Appl. Polym. Sci., 137, 48581 (2020).

    Article  CAS  Google Scholar 

  17. L. Crema, M. Sorgato, F. Zanini, S. Carmignato, and G. Lucchetta, Compos. Part A-Appl. Sci. Manuf., 107, 366 (2018).

    Article  CAS  Google Scholar 

  18. M. Saniei, M. Tran, S. Bae, P. Boahom, P. Gong, and C. B. Park, RSC Adv., 109, 108056 (2016).

    Article  Google Scholar 

  19. J. L. Thomason, Compos. Part A-Appl. Sci. Manuf., 33, 1641 (2002).

    Article  Google Scholar 

  20. A. Güllü, A. Özdemir, and E. Özdemir, Mater. Des., 27, 316 (2006).

    Article  Google Scholar 

  21. J. Q. Li, T. D. Li, Y. D. Jia, S. G. Yang, S. F. Jiang, and L. S. Turng, Polym. Test., 71, 182 (2018).

    Article  CAS  Google Scholar 

  22. P. Svoboda, C. C. Zeng, H. Wang, L. J. Lee, and D. L. Tomasko, J. Appl. Polym. Sci., 85, 1562 (2002).

    Article  CAS  Google Scholar 

  23. A. Suplicz, F. Szabo, and J. G. Kovacs, Thermochim Acta, 574, 145 (2013).

    Article  CAS  Google Scholar 

  24. H. B. H. Salah, H. B. Daly, J. Denault, and F. Perrin, Polym. Eng. Sci., 53, 905 (2013).

    Article  CAS  Google Scholar 

  25. M. Fasihi, H. Garmabi, S. R. Ghaffarian, and M. Ohshima, J. Appl. Polym. Sci., 130, 1834 (2013).

    Article  CAS  Google Scholar 

  26. R. H. Olley and D. C. Bassett, Polymer, 23, 1707 (1982).

    Article  CAS  Google Scholar 

  27. A. Rozanski, A. Galeski, and M. Debowska, Macromolecules, 44, 20 (2011).

    Article  CAS  Google Scholar 

  28. G. Challa, P. H. Hermans, and A. Weidinger, Makromolekulare Chemie, 56, 169 (1962).

    Article  CAS  Google Scholar 

  29. ASTM D 638, “Standard Test Method for Tensile Properties of Plastics”, 2003.

  30. ASTM D790, “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials”, 2003.

  31. J. Q. Li, H. C. Zhou, F. Y. Xu, S. F. Jiang, and W. Zheng, Polym. Advan. Tchnol., 26, 1312 (2015).

    Article  CAS  Google Scholar 

  32. A. Romankiewicz, T. Sterzynski, and W. Brostow, Polym. Int., 53, 2086 (2004).

    Article  CAS  Google Scholar 

  33. F. Jay, J. M. Haudin, and B. Monasse, J. Mater. Sci., 34, 2089 (1999).

    Article  CAS  Google Scholar 

  34. G. Wang, G. Zhao, L. Zhang, Y. Mu, and C. B. Park, Chem. Eng. J., 350, 1 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (NSFC, Grant No. 51905307), Chinese Postdoctoral Science Foundation (2019M662352), State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (P2020-012), the National Natural Science Foundation of China (NSFC, Grant No. 51875318, 51905308), the Major Science and Technology Innovation Project of Shandong Province (Grant No. 2019JZZY020205) and the Qilu Outstanding Scholar Program of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aimin Zhang, Guoqun Zhao or Guilong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, A., Zhao, G., Chai, J. et al. Crystallization and Mechanical Properties of Glass Fiber Reinforced Polypropylene Composites Molded by Rapid Heat Cycle Molding. Fibers Polym 21, 2915–2926 (2020). https://doi.org/10.1007/s12221-020-1284-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1284-8

Keywords

Navigation