Skip to main content
Log in

An Experimental Study on Modelling the Physical Properties of Composite Psyllium, Alginate and Chitosan Fibers Using Box-Behnken Technique

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Polysaccharides from different sources have found their applications in the wound care for their inherent abilities of gelling, biocompatibility, biodegradability, and antibacterial activity. Considering the low cost, ease of processing, abundance in nature and therapeutic benefits of the polysaccharides we developed psyllium, alginate and chitosan (PAC) composite fibers and modelled their physical properties namely; tenacity, linear density and absorption in both distilled water and saline solution; using Box-Behnken (BB) technique of Response Surface Methodology (RSM). The PAC fibers were produced using an in house developed wet spinning module; briefly the dope solutions containing psyllium and alginate were extruded into a hydrolyzed chitosan and CaCl2. The produced fibers were acetone washed to remove the polar solvent; in this case water; and later dried in air. The present work aimed at the development of statistical models for physical properties: linear density, tenacity, antibacterial efficacy and liquid absorption; of the composite PAC fibers. The factors under consideration were the raw material concentration namely; alginate and psyllium in dope solution and calcium chloride (CaCl2) and hydrolysed chitosan in the coagulation bath. The experimental work was designed and analyzed using Minitab® 17 statistical software. Regression models using the under consideration factors were successfully developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ponrasu, P. K. Veerasubramanian, R. Kannan, G. Selvakuar, S. Lonchin, and M. Vignesh, RSC Adv., 8, 2305 (2018).

    Article  CAS  Google Scholar 

  2. K. Moore, R. McCallion, R. J. Searle, M. C. Stacey, and K. G. Harding, Int. Wound J., 3, 89 (2006).

    Article  Google Scholar 

  3. K. V. Kavitha, S. Tiwari, V. B. Purandare, S. Khedkar, S. S. Bhosale, and A. G. Unnikrishnan, World J. Diabetes, 5, 546 (2014).

    Article  Google Scholar 

  4. G. D. Winter and J. T. Scales, Nature, 4862, 91 (1963).

    Article  Google Scholar 

  5. R. Masood, T. Husssain, M. Miraftab, A. Ullah, Z. A. Raza, T. Areeb, and M. Umar, J. Ind. Text., 47, 20 (2017).

    Article  CAS  Google Scholar 

  6. C. Fernandes, P. C. Acharya, and S. Bhatt, Sci. Rep., 8, 17213 (2018).

    Article  Google Scholar 

  7. Z. Cheng, J. Blackford, Q. Wang, and L. Yu, J. Funct. Foods, 1, 44 (2009).

    Article  CAS  Google Scholar 

  8. R. Masood, T. Hussain, M. Miraftab, Z. A. Raza, A. Ullah, T. Areeb, M. Umar, and R. Riaz, J. Wound Care, 27, 394 (2018).

    Article  Google Scholar 

  9. B. S. Patil, V. S. Mastiholimath, and A. R. Kulkarni, Orient Pharma Exp. Med., 11, 123 (2011).

    Article  Google Scholar 

  10. R. Ahmadi, A. Kalbasi-Ashtari, A. Oromiehie, M. S. Yarmand, and F. Jahandideh, J. Food Eng., 109, 745 (2012).

    Article  CAS  Google Scholar 

  11. M. H. Fischer, N. Yu, G. R. Gray, J. Ralph, L. Anderson, and J. Marlett, Carbohydr. Res., 339, 2009 (2004).

    Article  CAS  Google Scholar 

  12. Q. Guo, S. W. Cui, Q. Wang, H. D. Goff, and A. Smith, Food Hydrocoll., 23, 1542 (2009).

    Article  CAS  Google Scholar 

  13. P. Pal, A. Banerjee, K. Soren, P. Chakraborty, J. P. Prakash, G. Sen, and R. Bandopadhyay, J. Polym. Environ., 27, 1178 (2019).

    Article  CAS  Google Scholar 

  14. L. Kuen Yong and D. J. Mooney, Prog. Polym. Sci., 37, 106 (2012).

    Article  Google Scholar 

  15. Y. Qin, Polym. Int., 57, 171 (2008).

    Article  CAS  Google Scholar 

  16. Y. Qin, H. Hu, and A. Luo, J. Appl. Polym. Sci., 101, 4216 (2006).

    Article  CAS  Google Scholar 

  17. K. I. Draget and C. Taylor, Food Hydrocoll., 25, 251 (2011).

    Article  CAS  Google Scholar 

  18. S. Thomas, J. Wound Care, 9, 56 (2000).

    Article  CAS  Google Scholar 

  19. P. Gacesa, Carbohydr. Polym., 8, 161 (1988).

    Article  CAS  Google Scholar 

  20. T. Mikolajczyk and D. Wolowska-czapnik, Fibres Text. East. Eur., 13, 35 (2005).

    CAS  Google Scholar 

  21. T. W. Wong, J. Pharm. Pharmacol., 63, 1497 (2011).

    Article  CAS  Google Scholar 

  22. A. Niekraszewicz, FIBRES Text. East. Eur., 13, 16 (2005).

    CAS  Google Scholar 

  23. Y. Q. Gill, F. Saeed, M. S. Irfan, H. Ehsan, and A. Shakoor, J. Rubber Res., 21, 194 (2018).

    Article  CAS  Google Scholar 

  24. R. Masood, T. Hussain, M. Umar, A. Ullah, T. Areeb, and S. Riaz, J. Wound Care, 26, 115 (2017).

    Article  CAS  Google Scholar 

  25. I. R. Sweeney, M. Miraftab, and G. Collyer, Carbohydr. Polym., 102, 920 (2014).

    Article  CAS  Google Scholar 

  26. L. Fan, L. Yu, Y. Xu, C. Yi, J. Cai, M. Li, and J. Huang, J. Appl. Polym. Sci., 116, 2151 (2010).

    Article  CAS  Google Scholar 

  27. T. Hussain, R. Masood, M. Umar, T. Areeb, and A. Ullah, Fiber. Polym., 17, 1749 (2016).

    Article  CAS  Google Scholar 

  28. M. Miraftab, J. F. Kennedy, M. R. Groocock, and G. Smart, PCT, WO2004078063 A2 (2004).

  29. B. Simoncic and B. Tomsic, Text. Res. J., 80, 1721 (2010).

    Article  CAS  Google Scholar 

  30. W. Steplewski, D. Wawro, A. Niekraszewicz, and D. Ciechanska, Fibres Text. East. Eur., 14, 25 (2006).

    CAS  Google Scholar 

  31. C. Knill, J. F. Kennedy, J. Mistry, M. Miraftab, G. Smart, M. R. Groocock, and H. J. Williams, Carbohydr. Polym., 55, 65 (2004).

    Article  CAS  Google Scholar 

  32. R. Masood and M. Miraftab, J. Wound Care, 23, 153 (2014).

    Article  CAS  Google Scholar 

  33. R. Masood, M. Miraftab, T. Hussain, and V. Edward-jones, J. Ind. Text., 44, 699 (2015).

    Article  CAS  Google Scholar 

  34. M. Naseri-Nosar and Z. M. Ziora, Carbohydr. Polym., 189, 379 (2018).

    Article  CAS  Google Scholar 

  35. G. D. Mogosanu and A. M. Grumezescu, Int. J. Pharm., 463, 127 (2014).

    Article  CAS  Google Scholar 

  36. R. Rathinamoorthy and L. Sasikala, Int. J. Pharm. Pharm. Sci., 3, 38 (2011).

    CAS  Google Scholar 

  37. X. L. Yu and Y. He, Sci. Rep., 7, 2789 (2017).

    Article  Google Scholar 

  38. T. Hussain, A. Ullah, M. Umar, T. Areeb, Z. Zubair, R. Masood, and Q. Zia, Color. Technol., 131, 474 (2015).

    Article  CAS  Google Scholar 

  39. S. Maity and A. Chatterjee, Fiber. Polym., 14, 1407 (2013).

    Article  CAS  Google Scholar 

  40. N. Eslahi, F. Dadashian, and N. H. Nejad, Adv. Powder Technol., 24, 416 (2013).

    Article  CAS  Google Scholar 

  41. K. A. B. Vishnu, M. C. Varadaraj, L. R. Gowda, and R. N. Tharanthan, Biochem J., 391, 167 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ick Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, A., Ullah, S., Areeb, T. et al. An Experimental Study on Modelling the Physical Properties of Composite Psyllium, Alginate and Chitosan Fibers Using Box-Behnken Technique. Fibers Polym 21, 2494–2504 (2020). https://doi.org/10.1007/s12221-020-1277-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1277-7

Keywords

Navigation