Skip to main content
Log in

Study on Surface Characteristics of E-glass Fiber Reinforced Epoxy Resin Composites in Different Stages of Tracking

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

To study the variation of surface characteristics of glass fiber reinforced epoxy composite insulation materials during the development of tracking, this paper established an experimental platform for tracking under the inclined plate method and prepared samples of glass fiber reinforced epoxy resin. In this paper, according to the experimental discharge phenomenon, discharge repetition rate phase diagram and corrosion degree of materials, the process of tracking was divided into four stages: initiation, stability, development and outbreak stages. Scanning electron microscope was used to observe the change of micromorphology of samples in different stages of tracking. The content of elements in different stages of tracking was determined by energy dispersive spectrometer. The surface characteristic functional groups in different stages of tracking were measured by Fourier transform infrared spectroscopy. The results show that with the change of surface morphology and the formation of surface products during tracking, the content of C element in the spherical region of the material decreased first and then increased, and the content of O and Si increased first and then decreased. The epoxy group of the material was gradually decomposed. Carbonyl group was generated on the surface of the material, and then decomposed during the outbreak stages. In addition, the deterioration mechanism of thermal aging and tracking was quite different. Thermal aging provided convenient routes for the electron injection into the material during tracking, thus reducing the tracking and erosion resistance of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. X. Du, IEEE T. Dielect. El. In., 8, 897 (2001).

    Article  CAS  Google Scholar 

  2. A. D. Lorenzi, L. Grando, A. Pesce, P. Bettini, and R. Specogna, IEEE T. Dielect. El. In., 16, 77 (2009).

    Article  Google Scholar 

  3. E. Mboungou, C. Mavon, J. M. Friedt, C. Bergeon, and M. Fromm, IEEE T. Dielect. El. In., 15, 311 (2008).

    Article  CAS  Google Scholar 

  4. S. T. Li, G. L. Yin, G. Chen, J. Y. Li, S. N. Ba, L. S. Zhong, and Y. X. Zhang, and Q. Q. Lei, IEEE T. Dielect. El. In., 17, 1523 (2010).

    Article  CAS  Google Scholar 

  5. S. Kumagai and N. Yoshimura, IEEE T. Dielect. El. In., 8, 203 (2001).

    Article  CAS  Google Scholar 

  6. J. H. Mason, B. X. Du, and S. Kobayashi, IEEE T. Dielect. El. In., 11, 911 (2004).

    Article  Google Scholar 

  7. B. X. Du, J. W. Zhang, L. Gu, and H. J. Liu, “Application of Nonlinear Methods in Tracking Failure Test of Epoxy/SiO2 Nanocomposite”, IEEE Int’l. Conf. Solid Dielectrics, pp.1–4, 2010.

  8. B. X. Du, J. W. Zhang, L. Gu, M. J. Tu, Z. Q. Wang, and D. M. Du, “Application of Nonlinear Methods in Tracking Failure Test of Silicone Rubber Nanocomposite”, 2010 Annual Report Conference on Electrical Insulation and Dielectic Phenomena, West Lafayette, IN, pp.1–4, 2010.

  9. Z. Wang, Y. Cheng, and K. Wu, IEEE T. Dielect. El. In., 18, 561 (2011).

    Article  CAS  Google Scholar 

  10. R. Boudissa, S. Djafri, A. Haddad, R. Belaicha, and R. Bearsch, IEEE T. Dielect. El. In., 12, 429 (2005).

    Article  Google Scholar 

  11. Z. Zhang, X. Jiang, C. Sun, J. Hu, and H. Huang, IEEE T. Dielect. El. In., 17, 1787 (2010).

    Article  Google Scholar 

  12. F. Zhang, X. Wang, L. M. Wang, Z. C. Guan, H. Wen, R. H. Li, and Y. Ma, IEEE T. Dielect. El. In., 15, 783 (2008).

    Article  CAS  Google Scholar 

  13. W. Sima, Q. Yang, G. Ma, C. Jiang, L. Wu, and H. Cheng, IEEE T. Dielect. El. In., 17, 572 (2010).

    Article  Google Scholar 

  14. X. Jiang, S. Wang, Z. Zhang, J. Hu, and Q. Hu, IEEE T. Dielect. El. In., 17, 71 (2010).

    Article  CAS  Google Scholar 

  15. J. H. Dymond, N. Stranges, K. Younsi, and J. E. Hayward, IEEE Trans. Ind. Appl., 38, 577 (2002).

    Article  Google Scholar 

  16. B. X. Du, IEEE T. Dielect. El. In., 12, 1162 (2005).

    Article  CAS  Google Scholar 

  17. B. X. Du, X. H. Zhu, L. Gu, and H. J. Liu, IEEE T. Dielect. El. In., 18, 176 (2011).

    Article  Google Scholar 

  18. M. Suchitra, N. M. Renukappa, C. Ranganathaiah, and J. S. Rajan, IEEE T. Dielect. El. In., 25, 2129 (2018).

    Article  CAS  Google Scholar 

  19. J. Montesinos, R. S. Gorur, L. Zimmer, and N. F. Hubele, IEEE T. Dielect. El. In., 7, 408 (2000).

    Article  CAS  Google Scholar 

  20. B. X. Du, Y. Liu, and H. J. Liu, IEEE T. Dielect. El. In., 15, 1379 (2008).

    Article  Google Scholar 

  21. T. Okamoto, “Novel Partial Discharge Measurement Computer-aided Measurement Systems”, IEEE Transactions on Dielectrics and Electrical Insulation, 21, 1015 (1986).

    Article  Google Scholar 

  22. A. Ersoy, Y. Özcelep, and A. Kuntman, Turkish J. Elect. Eng. Comput. Sci., 16, 257 (2008).

    Google Scholar 

  23. A. Syakur, Hermawan, and H. Sutanto, “Study on Tracking Time of Epoxy Resin Insulating Material under Artificial Accelerated Aging”, 2017 International Conference on High Voltage Engineering and Power Systems (ICHVEPS), Sanur, pp.503–507, 2017.

  24. H. Khan, M. Amin, A. Ahmad, and M. Yasin, “Erosion/tracking Resistance Investigation of Micro/nano-SiO2 Filled RTV-SiR Composites for Outdoor High Voltage Insulations”, 2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, pp.15–19, 2017.

  25. B. X. Du, High Voltage Eng., 31, 10 (2005).

    Google Scholar 

  26. Y. Q. Wang, H. Liu, W. Li, and R. J. Ding, Macromol. Res., 27, 310 (2019).

    Article  CAS  Google Scholar 

  27. X. Liu, H. D. Lin, Y. M. Liang, C. Zhang, Q. Xie, and T. Shao, Trans. China Electrotech. Soc., 30, 158 (2015).

    Google Scholar 

  28. C. Pan, W. Shen, K. Wu, Z. P. Lü, Y. Chang, and Y. H. Cheng, Trans. China Electrotech. Soc., 26, 115 (2011).

    Google Scholar 

  29. J. V. Vas, B. Venkatesulu, and M. Joy Thomas, IEEE T. Dielect. El. In., 19, 91 (2012).

    Article  CAS  Google Scholar 

  30. Y. X. Chen, X. D. Zhou, X. C. Yin, Q. F. Lin, and M. Q. Zhou, Int. J. Polym. Mater. Polym. Biomater., 63, 221 (2014).

    Article  CAS  Google Scholar 

  31. V. Rajini, K. Kanchana, V. Gowrishree, and K. Udayakumar, “Comparison of Surface Tracking in Polymeric Insulating Materials”, International Conference on Power System Technology, IEEE, 2004.

  32. Y. Zheng, Insulating Matericals, 45, 59 (2012).

    Google Scholar 

  33. S. Kumagal and N. Yoshimura, IEEE T. Dielect. El. In., 7, 424 (2000).

    Article  Google Scholar 

  34. Z. H. Li, Y. Yin, J. Zhu, and D. M. Tu, Proceedings of the CSEE, 19, 70 (1999).

    Google Scholar 

  35. Y. Liang, Z. Jin, Y. P. Liu, and Y. X. Chen, Trans. China Electrotech. Soc., 30, 189 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Feng, C., Luo, Y. et al. Study on Surface Characteristics of E-glass Fiber Reinforced Epoxy Resin Composites in Different Stages of Tracking. Fibers Polym 21, 2556–2568 (2020). https://doi.org/10.1007/s12221-020-1265-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1265-y

Keywords

Navigation