Skip to main content
Log in

Investigating the High Velocity Impact Behavior of the Laminated Composites of Aluminum/Jute Fibers- Epoxy Containing Nanoclay Particles

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this research work, the effect of adding nanoclay on the high velocity impact behavior of fibers metal laminates (FMLs) of aluminum- Jute fibers/epoxy was investigated. To do so, the nanoclay particles with different percentages (0, 1, 3 and 5 wt.%) were firstly added into the epoxy matrix. In the following, the FMLs with the configuration of 0/90/0/90/0 were made by hand lay-up method. After that, the fabricated samples were tested by high velocity impact test. In order to investigate the effect of nanoparticles on the impact properties, the field emission scanning electron microscope (FESEM) was used. The obtained results showed that the samples with 0, 1, 3 and 5 wt.% had the limit velocity of 81.9, 83.7, 87.4 and 85.4 m/s, respectively. The limit velocity increment in these samples by adding nanoclay were 2.2, 6.7 and 4.3 %, respectively. Also, the obtained results showed that by adding the 1, 3 and 5 wt.% nanoclay, the absorbed energy was improved about 4.5, 14 and 8.8 %, respectively. The sample with 3 wt.% nanoclay had minimum delamination length between aluminum shell and composite core, which was due to the effect of nanoclay in the interface adhesion of core-shell. The microscopically analysis showed that the nanoclay increased the fibrillation of Jute fibers as one of the absorbed energy mechanisms in the Jute fibers. Also, the agglomeration phenomenon in the sample with the 5 wt.% nanoclay was illustrated, which was the decreasing factor of its impact properties, as comparison with sample with 3 wt.% nanoclay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Ebrahimnezhad-Khaljiri and R. Eslami-Farsani, Fiber. Polym., 16, 2445 (2015).

    Article  CAS  Google Scholar 

  2. H. Ebrahimnezhad-Khaljiri and R. Eslami-Farsani, Polym. Compos., 38, 1412 (2017).

    Article  CAS  Google Scholar 

  3. M. Amini and A. Khavandi, J. Compos. Mater., 53, 3433 (2019).

    Article  Google Scholar 

  4. M. Amini and A. Khavandi, Mech. Time-Dependent Mater., 23, 153 (2019).

    Article  CAS  Google Scholar 

  5. T. Sinmazçelik, E. Avcu, M. Ö. Bora, and O. Çoban, Mater. Des., 32, 3671 (2011).

    Article  Google Scholar 

  6. X. Cheng, L. Liu, X. Feng, L. Shen, and Z. Wu, Macromol. Mater. Eng., 304, 1900247 (2019).

    Article  Google Scholar 

  7. H. Amirbeygi, H. Khosravi, and E. Tohidlou, J. Appl. Polym. Sci., 136, 47410 (2019).

    Article  Google Scholar 

  8. N. Jamali, H. Khosravi, A. Rezvani, and E. Tohidlou, Fiber. Polym., 20, 138 (2019).

    Article  CAS  Google Scholar 

  9. H. Ebrahimnezhad-khaljiri, R. Eslami-farsani, and S. Arbab Chirani, J. Appl. Poly Sci., 137, 48580 (2020).

    Article  CAS  Google Scholar 

  10. A. Wang, D. Xia, G. Xian, and H. Li, Polym. Compos., 40, 3482 (2019).

    Article  CAS  Google Scholar 

  11. A. A. Khurram, R. Hussain, H. Afzal, A. Akram, and T. Subhanni, Int. J. Adhes. Adhes., 86, 29 (2018).

    Article  CAS  Google Scholar 

  12. F. Bahari-Sambran, R. Eslami-Farsani, and S. Arbab Chirani, J. Sandw. Struct. Mater., 22, 1931 (2020).

    Article  CAS  Google Scholar 

  13. M. H. Pol, G. Liaghat, E. Zamani, and A. Ordys, J. Compos. Mater., 49, 1449 (2015).

    Article  Google Scholar 

  14. E. E. Haro, A. G. Odeshi, and J. A. Szpunar, Int. J. Impact Eng., 96, 11 (2016).

    Article  Google Scholar 

  15. A. R. Pai and R. N. Jagtap, J. Mater. Environ. Sci., 6, 902 (2015).

    CAS  Google Scholar 

  16. M. R. Sanjay, P. Madhu, M. Jawaid, P. Senthamaraikannan, S. Senthil, and S. Pradeep, J. Cleaner. Prod., 172, 566 (2018).

    Article  CAS  Google Scholar 

  17. H. Ebrahimnezhad-Khaljiri, R. Eslami-Farsani, and E. Akbarzadeh, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 234, 1823 (2020).

    Article  CAS  Google Scholar 

  18. S. Dhar Malingam, F. A. Jumaat, L. F. Ng, K. Subramaniam, and A. F. Ab Ghani, Adv. Polym. Technol., 37, 2385 (2018).

    Article  CAS  Google Scholar 

  19. N. L. Feng, S. DharMalingam, K. A. Zakaria, and M. Z. Selamat, J. Sandw. Struct. Mater., 21, 2440 (2019).

    Article  CAS  Google Scholar 

  20. P. T. R. Swain and S. Biswas, J. Compos. Mater., 51, 3909 (2017).

    Article  CAS  Google Scholar 

  21. N. Zareei, A. Geranmayeh, and R. Eslami-Farsani, Polym. Test., 75, 205 (2019).

    Article  CAS  Google Scholar 

  22. M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, Compos. Pt. B-Eng., 43, 2883 (2012).

    Article  CAS  Google Scholar 

  23. H. Rahmani, R. Eslami-Farsani, and H. Ebrahimnezhad-Khaljiri, Fiber. Polym., 21, 170 (2020).

    Article  CAS  Google Scholar 

  24. H. Ebrahimnezhad-Khaljiri, R. Eslami-Farsani, and K. A. Banaie, Fiber. Polym., 18, 296 (2017).

    Article  CAS  Google Scholar 

  25. B. S. Butola, A. Majumdar, A. Jain, and G. Kaur, Fiber. Polym., 18, 786 (2017).

    Article  CAS  Google Scholar 

  26. N. G. Gonzalez-Canche, E. A. Flores-Johnson, P. Cortes, and J. G. Carrillo, Int. J. Adhes. Adhes., 82, 90 (2018).

    Article  CAS  Google Scholar 

  27. G. J. Withers, Y. Yu, V. N. Khabashesku, L. Cercone, V. G. Hadjiev, J. M. Souza, and D. C. Davis, Compos. Pt. B-Eng., 72, 175 (2015).

    Article  CAS  Google Scholar 

  28. W. J. Boo, L. Sun, J. Liu, E. Moghbelli, A. Clearfield, H. J. Sue, H. Pham, and N. Verghese, J. Polym. Sci. Pt. B-Polym. Phys., 45, 1459 (2007).

    Article  CAS  Google Scholar 

  29. K. Dean, J. Krstina, W. Tian, and R. J. Varley, Macromol. Mater. Eng., 292, 415 (2007).

    Article  CAS  Google Scholar 

  30. Y. Seki, Mater. Sci. Eng. A., 508, 247 (2009).

    Article  Google Scholar 

  31. C. Wu, K. Yang, Y. Gu, J. Xu, R. O. Ritchie, and J. Guan, Compos. Pt. A-Appl. Sci. Manuf., 117, 357 (2019).

    Article  CAS  Google Scholar 

  32. S. Dolati, A. Fereidoon, and A. R. Sabet, J. Compos. Mater., 48, 1241 (2014).

    Article  Google Scholar 

  33. H. Khoramishad, H. Alikhani, and S. Dariushi, Compos. Struct., 201, 561 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ebrahimnezhad-Khaljiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimnezhad-Khaljiri, H., Eslami-Farsani, R. & Talebi, S. Investigating the High Velocity Impact Behavior of the Laminated Composites of Aluminum/Jute Fibers- Epoxy Containing Nanoclay Particles. Fibers Polym 21, 2607–2613 (2020). https://doi.org/10.1007/s12221-020-1209-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1209-6

Keywords

Navigation