Skip to main content
Log in

Effects of Electric Filed on Electrospray Process: Experimental and Simulation Study

  • Regular Article
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

At present, there exists a widely-held view that electric field plays an extremely important role in the electrospray process. Aimed at investigating into the effects of electric field distribution and intensity on the electrospray process and resultant microsphere diameter, a variety of necessary and relevant tests were performed in this study by inviting an auxiliary electrode ring. The three-dimensional electric fields of the electrospray system were simulated, in addition, high-speed photography was adopted to recognize the electrospray modes. The results of a series of electrospray experiments demonstrated that not only electrospray mode but also resultant microsphere diameters are influenced, to a considerable degree, by the electric field. Such simulation results were verified by above-mentioned experiments that from higher electric field intensity comes smaller microsphere diameter, due to the fission caused by the surface charge, and besides, more uniform electric field distribution produces more uniform microsphere diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. X. Yin, S. Xin, L. J. Wan, C. J. Li, and Y. G. Guo, J. Phys. Chem. C, 115, 14148 (2011).

    Article  CAS  Google Scholar 

  2. G. M. Liang, X. Y. Qin, J. S. Zou, L. Y. Luo, Y. Z. Wang, M. Y. Wu, H. Zhu, G. H. Chen, F. Y. Kang, and B. H. Li, Carbon, 127, 424 (2018).

    Article  CAS  Google Scholar 

  3. G. L. Fillmore, W. L. Buehner, and D. L. West, Ibm. J. Res. Dev., 21, 37 (1977).

    Article  Google Scholar 

  4. J. J. Ahire and L. M. T. Dicks, Curr. Microbiol., 73, 236 (2016).

    Article  CAS  Google Scholar 

  5. Y. H. Lee, F. Mei, M. Y. Bai, S. L. Zhao, and D. R. Chen, J. Control Release, 145, 58 (2010).

    Article  CAS  Google Scholar 

  6. R. Sridhar and S. Ramakrishna, Biomatter, 3, e24281 (2013).

    Article  Google Scholar 

  7. T. H. Hwang, J. B. Kim, D. S. Yang, Y. I. Park, and W. H. Ryu, J. Micromech. Microeng., 23, 035012 (2013).

    Article  Google Scholar 

  8. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999).

    Article  CAS  Google Scholar 

  9. R. Ambrus, N. Radacsi, T. Szunyogh, E. D. M. Antoine, van der Heijden, J. H. Ter Horst, and P. Szabó-Révész, J. Pharmaceut. Biomed., 76, 1 (2013).

    Article  CAS  Google Scholar 

  10. P. Nemes, I. Marginean, and A. Vertes, Anal. Chem., 79, 3105 (2007).

    Article  CAS  Google Scholar 

  11. K. Q. Tang and A. Gomez, Phys. Fluids, 6, 404 (1994).

    Article  Google Scholar 

  12. S. Ogata, T. Hatae, K. Shoguchi, and H. Shinohara, Kagaku Kogaku, 3, 132 (1977).

    Article  Google Scholar 

  13. J. W. Xie, J. Jiang, P. Davoodi, M. P. Srinivasan, and C. H. Wang, Chem. Eng. Sci., 125, 32 (2015).

    Article  CAS  Google Scholar 

  14. H. B. Zhang, M. J. Edirisinghe, and S. N. Jayasinghe, J. Fluid. Mech., 558, 103 (2006).

    Article  CAS  Google Scholar 

  15. B. Q. T. Si, D. Byun, and S. Lee, J. Aerosol. Sci., 38, 924 (2007).

    Article  CAS  Google Scholar 

  16. M. W. Chang, E. Stride, and M. Edirisinghe, J. R. Soc. Interface, 7, 451 (2010).

    Article  Google Scholar 

  17. S. H. Hong, J. H. Moon, J. M. Lim, S. H. Kim, and S. M. Yang, Langmuir, 21, 10416 (2005).

    Article  CAS  Google Scholar 

  18. S. Neubert, D. Pliszka, A. Góra, A. Jaworek, E. Wintermantel, and S. Ramakrishna, J. Appl. Polym. Sci., 125, 820 (2012).

    Article  CAS  Google Scholar 

  19. B. Almería and A. Gomez, J. Colloid Interf. Sci., 417, 121 (2014).

    Article  Google Scholar 

  20. Y. Yang, Z. D. Jia, Q. Li, L. Hou, J. M. Liu, L. Wang, and Z. C. Guan, IEEE T. Dielect. El. In., 17, 1592 (2010).

    Article  Google Scholar 

  21. J. Ponce, S. Sullivan, A. Sudsang, J. D. Boissonnat, and J. P. Merlet, Int. J. Robot. Res., 16, 11 (1997).

    Article  Google Scholar 

  22. A. Jaworek, A. T. Sobczyk, and A. Krupa, J. Aerosol. Sci., 125, 57 (2018).

    Article  CAS  Google Scholar 

  23. Y. S. Zheng and Y. C. Zeng, J. Mater. Sci., 49, 1964 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11702169), and Talents Action Program of Shanghai University of Engineering Science (Grant No. 2017RC522017) to Dr. Y. Zheng. This work was also supported by Talents Action Program of Shanghai University of Engineering Science (Grant No. 2017RC432017) and Shanghai Local Capacity-Building Project (Grant No. 19030501200) to Dr. B. Xin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuansheng Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Zheng, Y., Xin, B. et al. Effects of Electric Filed on Electrospray Process: Experimental and Simulation Study. Fibers Polym 21, 2695–2705 (2020). https://doi.org/10.1007/s12221-020-1200-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-1200-2

Keywords

Navigation