Skip to main content
Log in

Design of an Instrument to Determine the Acoustic Characteristics of Non Wovens Made from Recycled Polyester, Jute and Flax

  • Regular Articles
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The influence of acoustic property of fabrics made from recycled polyethylene terephthalate (recycled PET), jute and flax fibres have been studied. Six different blended proportions (100 % Recycled PET, 100 % Jute, 100 % flax, 25 % jute: 25 % flax: 50 % recycled PET, 50 % jute: 25 % flax: 25 % recycled PET, 25 % jute: 50 % flax: 25 % recycled PET) of different grams per square meter 200, 400, 600 needle punched technique non woven fabrics have been produced and analyzed for their properties. The sound reduction of needle punched 50 % jute: 25 % flax: 25 % recycled PET non-woven has shown better performance among the six samples. The grams per square meter of the samples influence the sound reduction values of non woven fabric. Increase in gsm of the material also increases the sound reduction value. Among all the samples, the 50 % jute: 25 % flax: 25 % recycled PET non-woven sample produces good acoustic property in developed digital sound reduction tester and commercial sound impedance tube absorption co efficient value. Anova mathematical tool shows the there is a significant difference between input and output signal in the digital sound reduction tester. From the results, It is found that the sound reduction property of non woven fabrics increases and decreases with the types of fibre and grams per square meter of the samples. The jute non woven fabric can be used as good sound reduction material for various industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rawal, J. Text. Inst, 101, 350 (2014).

    Article  Google Scholar 

  2. R. D. Anandjiwala and L. Boguslavsky, Text Res. J., 78, 614 (2008).

    Article  CAS  Google Scholar 

  3. S. Debnath and M. Madhusoothanan, Indian J. Fibre Text. Res., 36, 122 (2011).

    CAS  Google Scholar 

  4. T. Dias, R. Monaragala, and E. Lay, Meas. Sci. Technol., 17, 2499 (2006).

    Article  CAS  Google Scholar 

  5. H. İ. Çelik, Period. Eng. Nat. Sci., 5, 210 (2017).

    Google Scholar 

  6. R. Islam, T. Islam, F. Nigar, S. Saha, A. Tapash, N. Shamin, K. Dey, A. I. Mustafa, R. A. Khan, M. A. Khan, and H. U. Zaman, Int. J. Polym. Mater., 60, 576 (2011).

    Article  CAS  Google Scholar 

  7. M. Kucukali Ozturk, B. Nergis, and C. Candan, J. Ind. Text., 47, 1739 (2018).

    Article  Google Scholar 

  8. Y.-E. Lee and C. Joo, Autex Res. J., 3, 78 (2003).

    Google Scholar 

  9. L. Ghali, M. Halimi, M. Hassen, and F. Sakli, AMPC, 4, 116 (2014).

    Article  Google Scholar 

  10. A. K. Nazan, Fibres Text. East. Eur., 24, 107 (2016).

    Google Scholar 

  11. M. B. Mvubu, R. Anandjiwala, and A. Patnaik, J. Eng. Fibers and Fabrics, 14, 155892501984087 (2019).

    Article  Google Scholar 

  12. M. Mohammadi, P. Banks-Lee, and P. Ghadimi, J. Ind. Text., 32, 45 (2002).

    Article  Google Scholar 

  13. N. F. Ahmed, J. Basic Appl. Sci. Res., 6, 9 (2016).

    Google Scholar 

  14. D. V. Parikh, Y. Chen, and L. Sun, Text. Res. J., 76, 813 (2006).

    Article  CAS  Google Scholar 

  15. P. S. Alcaraz, J. S. Alcaraz, I. Montava, and M. B. Aracil, Autex Res. J., 18, 269 (2018).

    Article  Google Scholar 

  16. R. P. Devi, Int. J. Adv. Technol. Eng. Sci., 2, 446 (2014).

    Google Scholar 

  17. T. Saravana Kumar and M. Ramesh Kumar, Int. J. Chem. Tech. Res., 8, 21 (2015).

    Google Scholar 

  18. S. Sakthivel and T. Ramachandran, Int. J. Eng. Res. Appl., 2, 2986 (2012).

    Google Scholar 

  19. S. Sengupta, S. Samajpati, and P. K. Ganguly, Indian J. Fibre Text. Res., 24, 103 (1999).

    CAS  Google Scholar 

  20. S. Sengupta, Indian J. Fibre Text. Res., 35, 237 (2010).

    CAS  Google Scholar 

  21. R. Sharma and A. Goel, J. Text. Sci. Eng., 7, 1 (2017).

    Google Scholar 

  22. G. Thilagavathi, E. Pradeep, T. Kannaian, and L. Sasikala, J. Ind. Text., 39, 267 (2010).

    Article  CAS  Google Scholar 

  23. J. Broda and M. Baczek, J. Nat. Fibers, 17, 1567 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Thirumurugan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirumurugan, V., RameshKumar, M. Design of an Instrument to Determine the Acoustic Characteristics of Non Wovens Made from Recycled Polyester, Jute and Flax. Fibers Polym 21, 3009–3015 (2020). https://doi.org/10.1007/s12221-020-0096-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-020-0096-1

Keywords

Navigation