Production of Disposable Antibacterial Textiles Via Application of Tea Tree Oil Encapsulated into Different Wall Materials

Abstract

In the present paper, it was aimed to produce disposable antibacterial textile surfaces with applications of TTO capsules having different wall materials. For this purpose, tea tree oil (TTO) was encapsulated into β-cyclodextrin (β-CD), polyvinyl alcohol (PVA) and Arabic gum (GA), and the prepared capsules were characterized with scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR) analyses. The capsules, which were proved that they had been prepared successfully by the analyses, were applied to the 100 % viscose nonwoven fabric surfaces by padding method at the concentration of 20 % (w/v). The treated fabric samples were characterized through SEM and FTIR analyses, as well as the antibacterial activities of the samples were evaluated against E. coli and S. aureus bacteria. The results indicated that the TTO/β-CD, TTO/PVA and TTO/GA capsules could be successfully applied onto textiles and the samples gained antibacterial activity properties at the different levels depending on the wall materials.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. Abedi, S. M. Mortazavi, M. K. Mehrizi, and M. Feiz, Tex. Res. J., 78, 311 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    S. Palamutcu, R. Keskin, N. Devrent, M. Sengül, and B. Hasçelik, Text. Tech. Elec. J., 3, 95 (2009).

    Google Scholar 

  3. 3.

    M. Ursache, C. Loghin, R. Mureşan, A. Cerempei, and A. Mureşan, Text. Appl., 3, 249 (2011).

    Google Scholar 

  4. 4.

    Y. Gao and R. Cranston, Text. Res. J., 78, 60 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    A. I. Wasif and S. K. Lag, AUTEX Res. J., 9, 5 (2009).

    Google Scholar 

  6. 6.

    F. Zhang, X. Wu, Y. Chen, and H. Lin, Fiber. Polym., 10, 496 (2009).

    CAS  Article  Google Scholar 

  7. 7.

    N. A. Ibrahim, M. Gouda, M. Husseiny, A. R. El-Gamal, and F. Mahrous, J. Appl. Polym. Sci., 112, 3589 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    O. Balcı, Ü. Alver, B. Sancar Beşen, A. Tanrıverdi, and M. Tutak, Ind. Text., 65, 80 (2014).

    Google Scholar 

  9. 9.

    B. Simoncic and B. Tomsic, Text. Res. J., 80, 1721 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    A. Cerempei, E. Guguianu, E. I. Muresan, C. Horhogea, C. Rîmbu, and O. Borhan, Fiber. Polym., 16, 1688 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    M. Joshi, S. W. Ali, R. Purwar, and S. Rajendran, Indian J. Fibre Text. Res., 34, 295 (2009).

    CAS  Google Scholar 

  12. 12.

    K. Yeh, C. P. Chang, T. Yamamoto, and T. Dobashi, Colloids and Surfaces A: Physicochem. Eng. Aspects, 380, 152 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    M. A. Perez-Liminana, F. J. Paya-Nohales, F. Aran-Ais, and C. Orgiles-Barcelo, J. Microencapsul., 31, 176 (2014).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Y. Ge and J. Tang, Fiber. Polym., 17, 862 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    M. Chen, Y. Hu, J. Zhou, Y. Xie, H. Wu, T. Yuan, and Z. Yang, RSC Adv., 6, 13032 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    A. Garozzo, R. Timpanaro, B. Bisignano, P.M. Furneril, G. Bisignano, and A. Castro, Lett. Appl. Microbiol., 49, 806 (2009).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    B. Ocak, G. Gülümser, and E. Baloglu, J. Essent. Oil Res., 23, 58 (2011).

    CAS  Article  Google Scholar 

  18. 18.

    K. A. Hammer, C. F. Carson, and T. V. Riley, J. Appl. Microbiol., 95, 853 (2003).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    M. M. Sanchez-Navarro, N. Cuesta-Garrote, F. Aran-Ais, and C. Orgiles-Barcelo, J. Disp. Sci. Tech., 32, 1722 (2011).

    CAS  Article  Google Scholar 

  20. 20.

    S. Zhang, J. Chen, X. Yin, X. Wang, B. Qiu, L. Zhu, and Q. Lin, J. Appl. Polym. Sci., 134, 1 (2017).

    Google Scholar 

  21. 21.

    Y. Ge and M. Ge, Fiber. Polym., 16, 308 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    ISO 4730:2017, Essential Oil of Melaleuca, terpene-4-ol (tea tree oil).

  23. 23.

    H. Cui, M. Bai, C. Li, R. Liu, and L. Lin, Lwt-Food Sci. Techn., 96, 671 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    H. Cui, M. Bai, and L. Lin, Carbohydr. Polym., 179, 360 (2018).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    H. Cui, M. Bai, M.M.A. Rashed, and L. Lin, Int. J. Food Microbiol., 266, 69 (2018).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    L. Lin, X. Mao, Y. Sun, G. Rajivgandhi, and H. Cui, Int. J. Food Microbiol., 292, 21 (2019).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    L. Lin, Y. Zhu, B. Thangaraj, M. A. S. Abdel-Samie, and H. Cui, Carbohydr. Polym., 188, 243 (2018).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    B. Sancar Besen, O. Balcı, C. Günesoglu, M. Orhan, E. İ. Somuncuoglu, and İ. İ. Tatlı, Fiber. Polym., 18, 1079 (2017).

    Article  CAS  Google Scholar 

  29. 29.

    F. Salaün, E. Devaux, S. Bourbigot, and P. Rumeau, Text. Res. J., 79, 1202 (2009).

    Article  CAS  Google Scholar 

  30. 30.

    B. Sancar Beşen, “Producing of Microcapsules Including Ozonated Vegetable Oils and Applying Them to Textile Surfaces”, pp.63–148, PhD Thesis, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, 2016.

    Google Scholar 

  31. 31.

    G. Nelson, Rev. Prog. Color., 31, 57 (2001).

    CAS  Article  Google Scholar 

  32. 32.

    F. Özyıldız, S. Karagönüllü, G. Basal, A. Uzel, and O. Bayraktar, Lett. Appl. Microbiol., 56, 168 (2012).

    Article  CAS  Google Scholar 

  33. 33.

    B. Sancar Beşen, C. Güneşoglu, and O. Balcı, AATCC J. Res., 3, 12 (2016).

    Article  CAS  Google Scholar 

  34. 34.

    C. Alkan, S. A. Aksoy, and R. A. Anayurt, Text. Res. J., 85, 2051 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    M. Karthikeyan, T. Ramachandran, and O. L. Shanmugasundaram, J. Text. Inst., 105, 1279 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    L. Li, W. Au, T. Hua, D. Zhao, and K. Wong, Text. Res. J., 83, 1236 (2013).

    Article  CAS  Google Scholar 

  37. 37.

    A. Avcı and S. Dönmez, Food, 35, 305 (2010).

    Google Scholar 

  38. 38.

    L. E. Hill, C. Gomes, and T. M. Taylor, Food Sci. Techn., 51, 86 (2013).

    CAS  Google Scholar 

  39. 39.

    E. Pinho, L. Magalhaes, M. Henriques, and R. Oliveira, Ann. Microbiol., 61, 493 (2011).

    CAS  Article  Google Scholar 

  40. 40.

    S. Ç. Aktaş, S. Gençer, A. Batirel, D. Haciseyitoglu, and S. Özer, Microbiol. Bul., 48, 545 (2014).

    Google Scholar 

  41. 41.

    J. Wang, Y. Cao, B. Sun, and C. Wang, Food Chem., 127, 1680 (2011).

    CAS  Article  Google Scholar 

  42. 42.

    H. S. Mansur, C. M. Sadahira, A. N. Souza, and A. A. P. Mansur, Mater. Sci. Eng. C, 28, 539 (2008).

    CAS  Article  Google Scholar 

  43. 43.

    Y. Li, W. Gan, J. Zhou, Z. Lu, C. Yang, and T. Ge, Trans. Nonferrous Met. Soc. China, 25, 2081 (2015).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Burcu Sancar Beşen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beşen, B.S. Production of Disposable Antibacterial Textiles Via Application of Tea Tree Oil Encapsulated into Different Wall Materials. Fibers Polym 20, 2587–2593 (2019). https://doi.org/10.1007/s12221-019-9350-9

Download citation

Keywords

  • Antibacterial textiles
  • tea tree oil
  • microencapsulation
  • β-CD inclusion complex