Skip to main content
Log in

Energy Characteristics and Failure Mechanisms for Textile Spread Tow Thin Ply Thermoplastic Composites under Low-velocity Impact

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Carbon composites are deemed suitable for components with complex geometries which require high impact resistance. The broad range of industrial applications requires composite structures to be lighter and not to compromise with their mechanical performance. Non-crimp fabrics with lower fibre areal weight (FAW) are the class of reinforcement material which will only bring the advantages of better mechanical properties but will also offer more longevity to the structures and reduced maintenance costs. This research aims at investigating the low-velocity impact performance of textile spread tow thin ply (100 gsm) composites with an aim to study the load bearing capability, deflection characteristics and energy characteristics. The results are compared with the baseline thick (200 gsm) fibre reinforced composites. There was 19.2 %, 16.6 %, and 6.57 % higher peak load for spread tow thin ply composites when compared to thick ply composites at 25 J., 42 J., and 52 J impact energies respectively. Significantly lower residual deflection (40 % to 76 %) and higher major damage energy (20 % to 33 %) were observed for spread tow thin ply laminates compared to the thick ply variant at different impact energies. At 42 J and 52 J impact energies, the damage index (DI) was 2 times and 4 times higher for Thick ply laminates highlighting extensive damage, which is also observed with detailed failure mechanisms study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kaczmarek and S. Maison, Compos. Sci. Technol., 51, 11 (1994).

    Article  Google Scholar 

  2. G. Caprino, I. Crivelli Visconti, and A. Di Ilio, Compos. Struct., 2, 261 (1984).

    Article  Google Scholar 

  3. S. C. Joshi and S. K. Bhudolia, J. Compos. Mater., 48, 3035 (2014).

    Article  CAS  Google Scholar 

  4. S. Bhudolia, S. Fischer, P. He, C. Y. Yue, S. C. Joshi, and J. Yang, Mater. Sci. Forum, 813, 337 (2015).

    Article  Google Scholar 

  5. V. Dikshit, S. Bhudolia, and S. Joshi, Fibers, 5, 38 (2017).

    Article  CAS  Google Scholar 

  6. S. W. Tsai and K. Kawabe, “Thin Ply Laminates”, Itochu Corporation ILT Corporation Mitsuya Co., Ltd. Fukui Prefectural Government, 2012.

  7. S. W. Tsai, “Thin Ply Composites”, Austin, Texas, 2005.

  8. S. Sihn, R. Kim, K. Kawabe, and S. Tsai, Compos. Sci. Technol., 67, 996 (2007).

    Article  CAS  Google Scholar 

  9. T. Yokozeki, Y. Aoki, and T. Ogasawara, Compos. Struct., 82, 382 (2008).

    Article  Google Scholar 

  10. T. Yokozeki, A. Kuroda, A. Yoshimura, T. Ogasawara, and T. Aoki, Compos. Struct., 93, 49 (2010).

    Article  Google Scholar 

  11. S. K. Bhudolia, P. Perrotey, and S. C. Joshi, Compos. Struct., 179, 502 (2017).

    Article  Google Scholar 

  12. S. K. Bhudolia, P. Perrotey, and S. C. Joshi, Compos. Part B: Eng., 134, 246 (2018).

    Article  CAS  Google Scholar 

  13. S. K. Bhudolia, K. K. C. Kam, P. Perrotey, and S. C. Joshi, J. Ind. Text., 48, 1151 (2018).

    Article  Google Scholar 

  14. S. K. Bhudolia and S. C. Joshi, Compos. Struct., 203, 696 (2018).

    Article  Google Scholar 

  15. S. A. Hitchen and R. M. J. Kemp, Composites, 26, 207 (1995).

    Article  CAS  Google Scholar 

  16. E. Fuoss, P. V. Straznicky, and C. Poon, Compos. Struct., 41, 67 (1998).

    Article  Google Scholar 

  17. E. Fuoss, P. V. Straznicky, and C. Poon, Compos. Struct., 41, 177 (1998).

    Article  Google Scholar 

  18. M. de Freitas and L. Reis, Compos. Struct., 42, 365 (1998).

    Article  Google Scholar 

  19. Y. Aoki, H. Suemasu, and T. Ishikawa, Adv. Compos. Mater., 16, 45 (2007).

    Article  CAS  Google Scholar 

  20. R. Amacher, J. Cugnoni, J. Botsis, L. Sorensen, W. Smith, and C. Dransfeld, Compos. Sci. Technol., 101, 121 (2014).

    Article  CAS  Google Scholar 

  21. S. K. Bhudolia, K. K. Kam, and S. C. Joshi, J. Ind. Text., 47, 1887 (2017).

    Article  CAS  Google Scholar 

  22. S. K. Bhudolia, P. Perrotey, and S. C. Joshi, Materials, 10, 293 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  23. E. M. Sozer, P. Simacek, and S. G. Advani in “Manufacturing Techniques for Polymer Matrix Composites (PMCs)” (S. G. Advani and K.-T. Hsiao Eds.), p.245, Woodhead Publishing, 2012.

  24. C. Kaynak and Y. O. Kas, Polym. Polym. Compos., 14, 55 (2006).

    CAS  Google Scholar 

  25. A. Bledzki, J. Gassan, and A. Kessler, “Loss Energy of Composite Materials. Part II: Impact Loading”, J. Test. Eval., 27, 36 (1999).

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the financial support from the Institute for Sports Research, Nanyang Technological University Singapore, ARKEMA, France and CHOMARAT, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somen K. Bhudolia.

Electronic Supplementary Material (ESM)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhudolia, S.K., Joshi, S.C., Bert, A. et al. Energy Characteristics and Failure Mechanisms for Textile Spread Tow Thin Ply Thermoplastic Composites under Low-velocity Impact. Fibers Polym 20, 1716–1725 (2019). https://doi.org/10.1007/s12221-019-9295-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-9295-z

Keywords

Navigation