Skip to main content

Effect of Electrospun Nanofiber Deposition on Thermo-physiology of Functional Clothing

Abstract

The present work focuses on developing electrospun nanofibers using wire electrospinning and deposition of such nanofibrous layer on the clothing textiles. The porosity and permeability of the fabrics are substantially influenced by deposition of nanofibers on woven textiles. Cotton, Kevlar and Nomex fabrics have been selected as the substrate material. They are extensively used in the military sector for uniform of defence personnel. The emergence of nanofiber technology with the advent of needle-less electrospinning has enabled researchers to apply such materials to existing fabrics. Nylon 6 (PA6) nanofibers are spun by wire electrode spinning and deposited on selected clothing fabrics. The fabrics so developed are compared with control fabric samples for understanding the influence on thermal and physiological properties. The thermal comfort is influenced mainly by porosity and thickness of the fabric ensemble. Air permeability results are significantly influenced by nanofiber deposition. A further study on moisture management properties is also carried out. The thermal and physiological comfort is influenced mainly by porosity and thickness of the fabric ensemble. The nanofiber deposition on base fabric significantly influences water vapor and liquid water transmission related properties.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. E. Zhao and F. Shen, Adv. Mater. Res., 496, 126 (2012).

    Article  Google Scholar 

  2. 2.

    Z. Q. Song and Y. T. Cai, Adv. Mater. Res., 602–604, 281 (2012).

    Article  CAS  Google Scholar 

  3. 3.

    R. Mishra, B. K. Behera, and J. Militky, Polym. Compos., 35, 1960 (2014).

    Article  CAS  Google Scholar 

  4. 4.

    L. Bao-feng, Appl. Mech. Mater., 340, 366 (2013).

    Article  Google Scholar 

  5. 5.

    B. K. Behera, A. K. Pattanayak, and R. Mishra, J. Text. Engg., 54, 103 (2008).

    Article  Google Scholar 

  6. 6.

    B. K. Behera, R. Gupta, and R. Mishra, Fiber. Polym., 9, 481 (2008).

    Article  CAS  Google Scholar 

  7. 7.

    M. Venkataraman, R. Mishra, D. Jasikova, T. M. Kotresh, and J. Militky, J. Ind. Text., 45, 387 (2015).

    Article  CAS  Google Scholar 

  8. 8.

    Z. M. Huang, Y. Z. Zhang, M. Kotaki and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003).

    Article  CAS  Google Scholar 

  9. 9.

    P. Gibson, H. Schreuder-Gibson, and D. Rivin, Coll. Surf. A, 187–188, 469 (2001).

    Article  Google Scholar 

  10. 10.

    M. Venkataraman, R. Mishra, J. Militky, and L. Hes, Fiber. Polym., 15, 1444 (2014).

    Article  CAS  Google Scholar 

  11. 11.

    R. Mishra, R. Tiwari, M. Marsalkova, B. K. Behera, and J. Militky, J. Text. I., 103, 1361 (2012).

    Article  CAS  Google Scholar 

  12. 12.

    R. Bagherzadeh, M. Latifi, S. S. Najar, M. A. Tehran, M. Gorji, and L. Kong, Text. Res. J., 82, 70 (2012).

    Article  CAS  Google Scholar 

  13. 13.

    M. Venkataraman, R. Mishra, T. M. Kotresh, J. Militky, and H. Jamshaid, Text. Prog., 48, 55 (2016).

    Article  Google Scholar 

  14. 14.

    B. D. Schoenmaker, L. V. D. Schueren, S. D. Vrieze, P. Westbroek, and K. D. Clerck, J. Appl. Polym. Sci., 120, 305 (2011).

    Article  CAS  Google Scholar 

  15. 15.

    S. C. Tjong, Mater. Sci. Eng. R., 53, 173 (2006).

    Article  CAS  Google Scholar 

  16. 16.

    B. Crina, M. Blaga, V. Luminita, and R. Mishra, Text. Conf., 23, 220 (2013).

    Google Scholar 

  17. 17.

    R. Mishra, B. K. Behera, and B. P. Pal, J. Text. Inst., 103, 320 (2012).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Srabani Misra.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akshat, T.M., Misra, S., Gudiyawar, M.Y. et al. Effect of Electrospun Nanofiber Deposition on Thermo-physiology of Functional Clothing. Fibers Polym 20, 991–1002 (2019). https://doi.org/10.1007/s12221-019-9100-z

Download citation

Keywords

  • PA6 nanofibers
  • Thermal resistance
  • Relative water vapor permeability
  • Overall moisture management capability (OMMC)
  • Contact angle