Skip to main content
Log in

Heat-resistant Poly(methyl methacrylate) Modified by Biomass Syringaldehyde Derivative: Preparation, Thermostability and Transparency

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Poly(methyl methacrylate) (PMMA) has found a lot of practical uses, however, how to efficiently and cost-effectively improve its relatively low thermal properties remains as an intractable academic challenge. This article reports a novel strategy for improving heat-resistance of PMMA by using biomass syringaldehyde. Syringaldehyde methacrylate (SMA) was first synthesized and then used as comonomer to copolymerize with methyl methacrylate (MMA) through bulk polymerization and solution polymerization. The copolymers can be obtained in high yield and demonstrate remarkably improved heat-resistance according to differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and derivative thermogravimetry analyses (DTG). Moreover, the modified PMMA still maintains good light transmittance in visible range. The study provides a new alternative for modifying PMMA, and the modified PMMA may find new applications as heat-resistant polymeric material which cannot routinely achieved by PMMA itself. In addition, SMA as a new type of green heat-resistant modifier derived from renewable biomass syringaldehyde may have potential applications in heat-resistant modification of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Gross, D. Camozzo, V. D. Noto, L. Armelao, and E. Tondello, Eur. Polym. J., 43, 673 (2007).

    Article  CAS  Google Scholar 

  2. D. J. Carbaugh, J. T. Wright, R. Parthiban, and F. Rahman, Semicond. Sci. Technol., 31, 025010 (2016).

    Article  CAS  Google Scholar 

  3. P. Kalakonda and S. Banne, Nanotechnol. Sci. Appl., 10, 45 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Li, J. Shen, and A. E. Tonelli, Polymer, 135, 355 (2018).

    Article  CAS  Google Scholar 

  5. H. Bai, F. Walsh, B. Gludovatz, B. Delattre, C. Huang, Y. Chen, A. P. Tomsia, and R. O. Ritchie, Adv. Mater., 28, 50 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. J. M. Kubiak, J. Yan, J. Pietrasik, and K. Matyjaszewski, Polymer, 117, 48 (2017).

    Article  CAS  Google Scholar 

  7. K. H. Yoo, I. W. Kim, J. H. Cho, and Y. J. Kwark, Fiber. Polym., 13, 1113 (2012).

    Article  CAS  Google Scholar 

  8. T. Li, Z. Zhang, W. Li, C. Liu, J. Wang, and L. An, Colloids Surf., A, 489, 289 (2016).

    Article  CAS  Google Scholar 

  9. T. S. Dalavoy, D. P. Wernette, M. Gong, J. V. Sweedler, Y. Lu, B. R. Flachsbart, M. A. Shannon, P. W. Bohn, and D. M. Cropek, Lab Chip, 8, 786 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. J. Zhang, M. Huo, M. Li, T. Li, N. Li, J. Zhou, and J. Jiang, Polymer, 134, 35 (2018).

    Article  CAS  Google Scholar 

  11. O. Aviv, S. Ratner, N. Amir, N. Laout, A. Basu, H. Shadmon, N. Beyth, and A. J. Domb, Polym. Adv. Technol., 28, 1334 (2017).

    Article  CAS  Google Scholar 

  12. K. V. Sreekanth, Y. Alapan, M. Elkabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. D. Luca, and G. Strangi, Nat. Mater., 15, 621 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. P. E. Feuser, A. V. Jacques, J. M. C. Arévalo, M. E. M. Rocha, M. C. D. Santos-Silva, C. Sayer, and P. H. H. D. Araujo, J. Nanopart. Res., 18, 104 (2016).

    Article  CAS  Google Scholar 

  14. G. He, Y. Song, S. Chen, and L. Wang, J. Mater. Sci., 53, 9721 (2018).

    Article  CAS  Google Scholar 

  15. S. Hammani, A. Barhoum, and M. Bechelany, J. Mater. Sci., 53, 1911 (2018).

    Article  CAS  Google Scholar 

  16. J. D. Peterson, S. Vyazovkin, and C. A. Wight, Macromol. Rapid Commun., 20, 480 (1999).

    Article  CAS  Google Scholar 

  17. J. Meng and Y. Wang, Open J. Org. Polym. Mater., 5, 23 (2015).

    Article  CAS  Google Scholar 

  18. J. Zhou, H. Zhang, J. Deng, and Y. Wu, Macromol. Chem. Phys., 217, 2402 (2016).

    Article  CAS  Google Scholar 

  19. A. L. Holmberg, K. H. Reno, N. A. Nguyen, R. P. Wool, and T. H. Epps, ACS Macro Lett., 5, 574 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Han, L. Yuan, G. Li, L. Huang, T. Qin, F. Chu, and C. Tang, Polymer, 83, 92 (2016).

    Article  CAS  Google Scholar 

  21. A. Bougarech, M. Abid, F. Gouanvé, E. Espuche, S. Abid, R. E. Gharbi, and E. Fleury, Polymer, 54, 5482 (2013).

    Article  CAS  Google Scholar 

  22. Z. Wang, L. Yuan, and C. Tang, Acc. Chem. Res., 50, 1762 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. F. He, K. Jin, J. Sun, and Q. Fang, ACS Sustainable Chem. Eng., 6, 3575 (2018).

    Article  CAS  Google Scholar 

  24. C. S. K. Reddy, R. Ghai, Rashmi, and V. C. Kalia, Bioresour. Technol., 87, 137 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. S. Bengtsson, A. Werker, M. Christensson, and T. Welander, Bioresour. Technol., 99, 509 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. X. Pang, X. Zhuang, Z. Tang, and X. Chen, Biotechnol. J., 5, 1125 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. J. Xu and B. Guo, Biotechnol. J., 5, 1149 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. A. S. Figueiredo, L. P. Icart, F. D. Marques, E. R. Fernandes, L. P. Ferreira, G. E. Oliveira, and F. G. Souza Jr, Sci. Total Environ., 647, 88 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. S. Tanaka, T. Iwata, and M. Iji, ACS Sustainable Chem. Eng., 5, 1485 (2017).

    Article  CAS  Google Scholar 

  30. B. Xiao, M. Zheng, J. Pang, Y. Jiang, H. Wang, R. Sun, A. Wang, X. Wang, and T. Zhang, Ind. Eng. Chem. Res., 54, 5862 (2015).

    Article  CAS  Google Scholar 

  31. A. Ebringerová and T. Heinze, Macromol. Rapid Commun., 21, 542 (2015).

    Article  Google Scholar 

  32. M. A. K. M. Zahari, H. Ariffin, M. N. Mokhtar, J. Salihon, Y. Shirai, and M. A. Hassan, J. Cleaner Prod., 87, 284 (2015).

    Article  CAS  Google Scholar 

  33. W. Ding, S. Wang, K. Yao, M. S. Ganewatta, C. Tang, and M. L. Robertson, ACS Sustainable Chem. Eng., 5, 11470 (2017).

    Article  CAS  Google Scholar 

  34. J. Ren, X. Peng, P. Feng, and R. Sun, Fiber. Polym., 14, 16 (2013).

    Article  CAS  Google Scholar 

  35. Y. Ge, L. Qin, and Z. Li, Mater. Des., 95, 141 (2016).

    Article  CAS  Google Scholar 

  36. X. Shen, B. Wang, P. Huang, J. Wen, and R. Sun, Bioresour. Technol., 206, 57 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. R. Ma, Y. Xu, and X. Zhang, ChemSusChem., 8, 24 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. M. P. Pandey and C. S. Kim, Chem. Eng. Technol., 34, 29 (2011).

    Article  CAS  Google Scholar 

  39. P. Picart, H. Liu, P. M. Grande, N. Anders, L. Zhu, J. Klankermayer, W. Leitner, P. D. D. María, U. Schwaneberg, and A. Schallmey, Appl. Microbiol. Biotechnol., 101, 6277 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. G. F. D. Gregorio, R. Prado, C. Vriamont, X. Erdocia, J. Labidi, J. P. Hallett, and T. Welton, ACS Sustainable Chem. Eng., 4, 6031 (2016).

    Article  CAS  Google Scholar 

  41. C. S. Lancefield, G. M. M. Rashid, F. Bouxin, A. Wasak, W. Tu, J. Hallett, S. Zein, J. Rodríguez, S. D. Jackson, N. J. Westwood, and T. D. H. Bugg, ACS Sustainable Chem. Eng., 4, 6921 (2016).

    Article  CAS  Google Scholar 

  42. H. Zhang, X. Yong, J. Zhou, J. Deng, and Y. Wu, ACS Appl. Mater. Interfaces, 8, 2753 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. S. Özlem, E. A. Gurel, and J. Hacaloglu, J. Anal. Appl. Pyrolysis, 113, 529 (2015).

    Article  CAS  Google Scholar 

  44. S. Özlem and J. Hacaloglu, J. Anal. Appl. Pyrolysis, 104, 161 (2013).

    Article  CAS  Google Scholar 

  45. T. Hirata, T. Kashiwagi, and J. E. Brown, Macromolecules, 18, 1410 (1985).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21774009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Deng.

Electronic supplementary material

12221_2019_9067_MOESM1_ESM.pdf

Heat-resistant Poly(methyl methacrylate) Modified by Biomass Syringaldehyde Derivative: Preparation, Thermostability and Transparency

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Mei, S., Yong, X. et al. Heat-resistant Poly(methyl methacrylate) Modified by Biomass Syringaldehyde Derivative: Preparation, Thermostability and Transparency. Fibers Polym 20, 2254–2260 (2019). https://doi.org/10.1007/s12221-019-9067-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-9067-9

Keywords

Navigation