Skip to main content
Log in

A Novel Natural Dye Derivative for Natural Fabric Supercritical Carbon Dioxide Dyeing Technology

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The supercritical carbon dioxide (SC-CO2) dyeing technology is a green dyeing technology, and the usage of natural dye makes SC-CO2 dyeing technology safer and more environment-friendly. Nevertheless, after using natural dye in SC-CO2 dyeing, the color depth and fastness of dyed natural fabric are poor. In this study, alkyl and hydroxyalkyl groups were grafted onto alizarin, which is a natural dye, to elevate the color depths and fastness of alizarin-derivative-dyed natural fabric. The results demonstrate that the color depths of alkyl-alizarin-dyed and hydroxyalkyl-alizarin-dyed natural fabrics were increased. This has to do with the increase in the solubilities of alkyl alizarin and hydroxyalkyl alizarin in SC-CO2. The hydroxybutyl-alizarin-dyed wool displayed the best color depth (K/S value: 6.44). And the hydroxyalkyl-alizarin-dyed natural fabric showed good washing fastness and rubbing fastness (about 4–5 level), because that hydroxyalkyl alizarin could be linked by a covalent bond to the natural fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. T. Ma, Y. X. Cao, and H. L. Chen, Colloids Surf., A, 549, 43 (2018).

    Article  CAS  Google Scholar 

  2. T. M. Abou Elmaaty, F. M. El-Taweel, and H. G. Elsisi, Fiber. Polym., 19, 887 (2018).

    Article  CAS  Google Scholar 

  3. T. Abou Elmaaty and E. Abd El-Aziz, Text. Res. J., 88, 1184 (2018).

    Article  CAS  Google Scholar 

  4. A. Hou, B. Chen, J. Dai, and K. Zhang, J. Cleaner Prod., 18, 1009 (2010).

    Article  CAS  Google Scholar 

  5. L. Cardozo-Filho, H. R. Mazzer, J. C. Santos, J. Andreaus, A. C. Feihrmann, C. Beninca, V. F. Cabral, and E. F. Zanoelo, Text. Res. J., 84, 1279 (2014).

    Article  Google Scholar 

  6. Y. Q. Zhang, X. C. Wei, and J. J. Long, J. Cleaner Prod., 133, 746 (2016).

    Article  CAS  Google Scholar 

  7. Y. Ding and H. S. Freeman, Color. Technol., 133, 369 (2017).

    Article  CAS  Google Scholar 

  8. M. Sadeghi-Kiakhani, Int. J. Environ. Sci. Technol., 12, 2363 (2015).

    Article  CAS  Google Scholar 

  9. A. Etemadifar, H. Dehghanizadeh, N. Nasirizadeh, and M. Rohani-Moghadam, Fiber. Polym., 15, 254 (2014).

    Article  CAS  Google Scholar 

  10. O. Deveoglu, B. Y. Sahinbaskan, E. Torgan, and R. Karadag, Color. Technol., 128, 364 (2012).

    Article  CAS  Google Scholar 

  11. K. Farizadeh, M. E. Yazdanshenas, M. Montazer, R. M. A. Malek, and A. Rashidi, Text. Res. J., 80, 847 (2010).

    Article  CAS  Google Scholar 

  12. D. De Santis and M. Moresi, Ind. Crops Prod., 26, 151 (2007).

    Article  CAS  Google Scholar 

  13. Z. Zhu, L. Zheng, B. Du, J. Wei, Y. Qian, and J. Sui, Adv. Mater. Res. (Durnten-Zurich, Switz.), 821–822, 556 (2013).

    Google Scholar 

  14. B. Guzel and A. Akgerman, J. Supercrit. Fluid., 18, 247 (2000).

    Article  CAS  Google Scholar 

  15. M. Liu, H. Zhao, J. Wu, X. Xiong, and L. Zheng, J. Cleaner Prod., 197, 1262 (2018).

    Article  CAS  Google Scholar 

  16. H. Zhao and S. Zhang, Color. Technol., 131, 218 (2015).

    Article  CAS  Google Scholar 

  17. M. Tsukada, M. M. R. Khan, T. Miura, R. Postle, and A. Sakaguchi, Text. Res. J., 83, 1242 (2013).

    Article  CAS  Google Scholar 

  18. GB/T 3920-2008, “Textiles-Tests for Colour Fastnesscolour Fastness to Rubbing”, China National Standardization Management Committee, China, 2008.

    Google Scholar 

  19. GB/T 3921-2008, “Textiles-Tests for Colour Fastnesscolour Fastness to Washing with Soap or Soap and Soda”, China National Standardization Management Committee, China, 2008.

    Google Scholar 

  20. GB/T 12490-2007, “Textiles-Tests for Colour Fastnesscolour Fastness to Domestic and Commercial Laudering”, China National Standardization Management Committee, China, 2007.

    Google Scholar 

  21. GB/T 8427-2008, “Textiles-Tests for Colour Fastnesscolour Fastness to Artificial Light: Xenon Arc Fading Lamp Test”, China National Standardization Management Committee, China, 2008.

    Google Scholar 

  22. Z. Yoshida and F. Takabayashi, Tetrahedron, 24, 933 (1968).

    Article  Google Scholar 

  23. M. El Ezaby, T. Salem, A. Zewail, and R. Issa, J. Chem. Soc. B, 7, 1293 (1970).

    Article  Google Scholar 

  24. V. Sasirekha, P. Vanelle, T. Terme, and V. Ramakrishnan, J. Fluoresc., 19, 419 (2009).

    Article  CAS  Google Scholar 

  25. D. Tuma, B. Wagner, and G. M. Schneider, Fluid Phase Equilib., 182, 133 (2001).

    Article  CAS  Google Scholar 

  26. J. C. Pinto, F. Potié, K. C. Rice, D. Boring, M. R. Johnson, D. M. Evans, G. H. Wilken, C. H. Cantrell, and A. C. Howlett, Mol. Pharmacol., 46, 516 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [grant number 21706021] and the National Natural Science Foundation of China [grant number 21606032].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongjuan Zhao or Laijiu Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zhao, H., Wang, M. et al. A Novel Natural Dye Derivative for Natural Fabric Supercritical Carbon Dioxide Dyeing Technology. Fibers Polym 20, 2376–2382 (2019). https://doi.org/10.1007/s12221-019-9029-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-9029-2

Keywords

Navigation