Skip to main content
Log in

A Comparative Study of the Physical, Mechanical and Thermo-mechanical Behavior of GFRP Composite Based on Fabrication Techniques

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The present study investigates the effect of fabrication techniques on the mechanical and thermo-mechanical behavior of bi-directional woven glass fiber epoxy composite for wind turbine blade application. The composites are fabricated by Vacuum Assisted Resin Transfer Molding (VARTM) and hand lay-up molding (HLM) techniques to identify the optimal performance output. The physical, mechanical and thermo-mechanical properties of the composites are evaluated for the samples fabricated by both the tecniques. It is observed that tensile strength, inter-laminar shear strength (ILSS) and flexural strength of the composites fabricated by VARTM technique are 405.62 MPa, 23.35 MPa and 239.3878 MPa respectively whereas composites fabricated by HLM technique shows slightly lower tensile strength (351.28 MPa), ILSS (16.75 MPa) and flexural strength (221.92 MPa). The intra-laminar mode-I fracture toughness test is also performed using compact tension specimen. The critical stress intensity factor (KIC) and critical strain energy release rate (GIC) are observed to be higher for VARTM composites. At the end, the dynamic mechanical analysis is performed to understand the material behavior and structural characteristics of these composites in high-temperature environment. This investigation purely governs the small-scale wind turbine blade structure in two different extreme climates from ambient to sustainable temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anonymous, Renewables 2017 Global Status Report. REN21 (2017).

  2. C. Edwards, MS Thesis, Clemson University, Clemson, 2011.

    Google Scholar 

  3. G. M. Joselin Herbert, S. Iniyan, E. Sreevalsan, S. Rajapandian, Renew. Sustain. Energy Rev., 11, 1117 (2007).

    Article  Google Scholar 

  4. P. S. Veers, T. D. Ashwill, H. J. Sutherland, D. L. Laird, D. W. Lobitz, D. A. Griffin, J. F. Mandell, W. D. Musial, K. Jackson, M. Zuteck, A. Miravete, S. W. Tsai, and J. L. Richmond, Wind Energy, 6, 245 (2003).

    Article  Google Scholar 

  5. N. A. Rahman, A. Hassan, R. Yahya, and R. Lafia-Araga, Fiber. Polym., 14, 1877 (2013).

    Article  CAS  Google Scholar 

  6. S. Biswas, B. Deo, A. Patnaik, and A. Satapathy, Polym. Compos., 32, 665 (2011).

    Article  CAS  Google Scholar 

  7. U. V. Sokolkin and A. A. Tashkinov, Mech. Compos. Mater., 21, 844 (1984).

    Google Scholar 

  8. V. Rizov, J. Theor. Appl. Mech., 42, 3 (2012).

    Google Scholar 

  9. S. F. M. de Almeida and Z. D. S. N. Neto, Compos. Struct., 28, 139 (1994).

    Article  Google Scholar 

  10. U. Javaid, Z. M. Khan, M. B. Khan, M. Bassyouni, S. M. S. Abdel-Hamid, M. H. Abdel-Aziz, and S. W. UlHasan, Compos. Part B Eng., 91, 257 (2016).

    Article  CAS  Google Scholar 

  11. O. Al-Qabandi, A. De Silva, S. Al-Enezi, and M. Bassyouni, J. Reinf. Plast. Compos., 33, 2287 (2014).

    Article  CAS  Google Scholar 

  12. D. Kim, D. J. Hennigan, and K. D. Beavers, Int. J. Nav. Archit. Ocean Eng., 2, 45 (2010).

    Article  Google Scholar 

  13. S. Y. Kim, C. S. Shim, C. Sturtevant, D. D. W. Kim, and H. C. Song, Int. J. Nav. Archit. Ocean Eng., 6, 723 (2014).

    Article  Google Scholar 

  14. A. Sharma and A. Patnaik, JOM-J. Min. Met. Mat. S., 70, 1284 (2018).

    Article  CAS  Google Scholar 

  15. Y. A. Kang, S. H. Oh, and J. S. Park, Fiber. Polym., 16, 1343 (2015).

    Article  CAS  Google Scholar 

  16. B. D. Agrawal, L. J. Broutman, and K. Chandrashekhara, “Analysis and Performance of Fiber Composites”, 3rd ed., pp.64–67, Wiley India Pvt. Ltd., New Delhi, India, 2015.

    Google Scholar 

  17. P. S. S. Gouda, S. K. Kudari, S. Prabhuswamy, and D. Jawali, J. Miner. Mater. Charact. Eng., 10, 671 (2011).

    Google Scholar 

  18. M. S. EL-Wazery, M. I. EL-Elamy, and S. H. Zoalfakar, Int. J. Appl. Sci. Eng., 14, 121 (2017).

    Google Scholar 

  19. G. D. Goh, V. Dikshit, A. P. Nagalingam, G. L. Goh, S. Agarwal, S. L. Sing, J. Wei, and W. Y. Yeong, Mater. Des., 137, 79 (2018).

    Article  CAS  Google Scholar 

  20. M. J. Pawar, A. Patnaik, and R. Nagar, Fiber. Polym., 17, 1078 (2016).

    Article  CAS  Google Scholar 

  21. S. Husic, I. Javni, and Z. S. Petrovic, Compos. Sci. Technol., 65, 19 (2005).

    Article  CAS  Google Scholar 

  22. Z. Fan, M. H. Santare, and S. G. Advani, Compos. Part A Appl. Sci. Manuf., 39, 540 (2008).

    Article  CAS  Google Scholar 

  23. H. Jung and Y. Kim, J. Mech. Sci. Technol., 29, 1955 (2015).

    Article  Google Scholar 

  24. M. J. Pawar, A. Patnaik, and R. Nagar, Polym. Compos., 38, 1335 (2017).

    Article  CAS  Google Scholar 

  25. L. W. H. Leonard, K. J. Wong, K. O. Low, and B. F. Yousif, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 223, 83 (2009).

    Google Scholar 

  26. B. Hulugappa, M. V. Achutha, and B. Suresha, J. Miner. Mater. Charact. Eng., 4, 1 (2016).

    CAS  Google Scholar 

  27. M. E. Launey and R. O. Ritchie, Adv. Mater., 21, 2103 (2009).

    Article  CAS  Google Scholar 

  28. N. Saba, M. Jawaid, O. Y. Alothman, and M. T. Paridah, Constr. Build. Mater., 106, 149 (2016).

    Article  CAS  Google Scholar 

  29. N. A. Rahman, A. Hassan, R. Yahya, and R. A. Lafia-Araga, Fiber. Polym., 14, 1877 (2013).

    Article  CAS  Google Scholar 

  30. S. Kumar, B. K. Satapathy, and A. Patnaik, Mater. Des., 32, 2260 (2011).

    Article  CAS  Google Scholar 

  31. S. Kumar, B. K. Satapathy, and A. Patnaik, Comput. Mater. Sci., 60, 250 (2012).

    Article  CAS  Google Scholar 

  32. M. J. Pawar, A. Patnaik, and R. Nagar, Polym. Compos., 38, 736 (2017).

    Article  CAS  Google Scholar 

  33. S. Kumar, B. K. Satapathy, and A. Patnaik, J. Mater. Sci., 46, 7489 (2011).

    Article  CAS  Google Scholar 

  34. B. H. N. Reddy, K. R. V. Mahesh, V. V. Lakshmi, and M. A. Kumar, Adv. Polym. Sci. Technol. An Int. J., 5, 11 (2015).

    Google Scholar 

  35. M. Jawaid, H. P. S. Abdul Khalil, and O. S. Alattas, Compos. Part A Appl. Sci. Manuf., 43, 288 (2012).

    Article  CAS  Google Scholar 

  36. M. Idicula, S. K. Malhotra, K. Joseph, and S. Thomas, Compos. Sci. Technol., 65, 1077 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from StateScience& Technology program, Department of Science and Technology (DST) New Delhi, India (DST/SSTP/Raj./373). The authors also acknowledge the Advanced research lab for Tribology and Materials Research Center (MRC), MNIT, Jaipur, India to provide the testing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amar Patnaik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, M., Sharma, A., Dwivedi, M. et al. A Comparative Study of the Physical, Mechanical and Thermo-mechanical Behavior of GFRP Composite Based on Fabrication Techniques. Fibers Polym 20, 823–831 (2019). https://doi.org/10.1007/s12221-019-8863-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8863-6

Keywords

Navigation