Fibers and Polymers

, Volume 20, Issue 1, pp 80–85 | Cite as

Using Saccharomyces cerevisiae Strains as Biocatalyst for Indigo Reduction

  • Younsook ShinEmail author
  • Kyunghee Son
  • Dong Il YooEmail author


The aim of this study is to investigate the efficacy of S. (Saccharomyces) cerevisiae strains to reduce natural indigo and to develop an eco-friendly reduction process of indigo as an alternative of chemical reductant. S. cerevisiae strains from baker’s yeast powder and Korean rice wine respectively were cultured, and used for carrying out the reduction of indigo. The reducing-activity toward natural indigo was evaluated quantitatively by dyeing test to measure color strength (K/S value) onto ramie fabric. The changes in K/S value and pH were monitored on the time-based mesurements. The time required to start reduction and maximum reduction, and duration were also evaluated. The time to reach the highest reduction level, i.e., the highest K/S value, of strain I (2-3 days) was shorter than that of strain II (3-4 days). The strain I from baker’s yeast showed higher reducing-activity, resulting stronger color yield on the fabric, and longer duration period than the strain II from Korean rice wine. Initial pH decreased drastically from 11.2 to 7-9 for one week with the progress of reduction reaction. K/S value increased to maximum (12-13) at first 2-4 days and decreased rapidly to 6-8, and then maintained for more than one week. Among reaction variables, controlling pH was the most critical to get maximum color strength when we used S. cerevisiae as biocatalyst.


Indigo Reduction Enzyme Saccharomyces cerevisiae Biocatalyst 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Padden, P. John, M. D. Collins, R. Hutson, and A. R. Hall, J. Archaeol. Sci., 27, 953 (2000).CrossRefGoogle Scholar
  2. 2.
    M. Bozic, M. Díaz-González, T. Tzanov, G. M. Guebitz, and V. Kokol, Enzyme Microb. Technol., 45, 317 (2009).CrossRefGoogle Scholar
  3. 3.
    Y. Shin, K. Son, and D. I. Yoo, Color. Tech., 26, 237 (2014).Google Scholar
  4. 4.
    E. S. Choi, E. B. Lee, H. A. Choi, K. Son, G. J. Kim, and Y. Shin, Kor. Soc. Biotech. Bioeng. J., 28, 295 (2013).Google Scholar
  5. 5.
    Y. Shin, K. Son, and D. I. Yoo, Fiber. Polym., 17, 1000 (2016).CrossRefGoogle Scholar
  6. 6.
    T. Bechtold and A. Turcanu, J. Clean. Prod., 17, 1669 (2009).CrossRefGoogle Scholar
  7. 7.
    M. Bozic and V. Kokol, Dyes and Pigm., 76, 299 (2008).CrossRefGoogle Scholar
  8. 8.
    A. Roessler and X. Jin, Dyes and Pigm. 59, 223 (2003).CrossRefGoogle Scholar
  9. 9.
    R. S. Blackburn and A. Harvey, Environ. Sci. Technol., 38, 4034 (2004).CrossRefGoogle Scholar
  10. 10.
    N. Meksi, M. B. Ticha, M. Kechida, and M. F. Mhenni, J. Cleaner Prod., 24, 149 (2012).CrossRefGoogle Scholar
  11. 11.
    Y. Shin, M. Choi, and D. I. Yoo, Fiber. Polym., 14, 2027 (2013).CrossRefGoogle Scholar
  12. 12.
    Y. Shin, M. Choi, and D. I. Yoo, Fashion and Textiles, 1, 6 (2014).CrossRefGoogle Scholar
  13. 13.
    R. G. Compton, S. J. Perkin, D. P. Gamblin, J. Davis, F. Marken, A. N. Padden, and P. John, New J. Chem., 24, 179 (2000).CrossRefGoogle Scholar
  14. 14.
    A. K. Patra, A. Madhu, and N. Bala, Fashion and Textiles, 5, 1 (2018).CrossRefGoogle Scholar
  15. 15.
    A. Osimani, L. Aquilanti, G. Baldini, G. Silvestri, A. Butta, and F. Clementi, J. Ind. Microbiol. Biotechnol., 39, 1309 (2012).CrossRefGoogle Scholar
  16. 16.
    G. K. Khor and M. H. Uzi, Yeast, 28, 93 (2011).CrossRefGoogle Scholar
  17. 17.
    C. R. Landry, J. P. Townsend, D. L. Hartl, and D. Cavalier, Mol. Ecol., 15, 575 (2006).CrossRefGoogle Scholar
  18. 18.
    M. D. Putra, A. K. Sulieman, A. E. Abasaeed, M. H. Gaily, S. M. Al-Zahrani, M. A. Zeinelabdeen, and H. K. Atiyeh, J. Clean. Prod., 162, 420 (2017).CrossRefGoogle Scholar
  19. 19.
    G. Ford and E. M. Ellis, Chemico-Biol. Inter., 130-132, 685 (2001).CrossRefGoogle Scholar
  20. 20.
    Q. Chang, T. A. Griest, T. M. Harter, and J. M. Petrash, Biochim. et Biophys. Acta, 1773, 321 (2007).CrossRefGoogle Scholar
  21. 21.
    W. Kroutil, H. Mang, K. Edegger, and K. Faber, Curr. Opin. Chem. Biol., 8, 120 (2004).CrossRefGoogle Scholar
  22. 22.
    T. Masuda, K. Watanabe, T. Harada, and K. Nakamura, Catal. Today, 96, 103 (2004).CrossRefGoogle Scholar
  23. 23.
    M. D. Leonida, Curr. Med. Chem., 8, 345 (2001).CrossRefGoogle Scholar
  24. 24.
    S. Pricelius, C. Held, S. Sollner, S. Deller, M. Murkovic, R. Ulrich, M. Horfrichter, A. Cavaco-Paulo, P. Macheroux, and G. M. Guebitz, Enzyme Microb. Technol., 40, 1732 (2007).CrossRefGoogle Scholar
  25. 25.
    E. Siu, K. Won, and C. B. Park, Biotechnol. Prog., 23, 293 (2007).CrossRefGoogle Scholar
  26. 26.
    A. N. Padden, V. M. Dillon, J. Edmonds, M. D. Collins, N. Alvarez, and P. John, Int. J. System. Bacteriol., 49, 1025 (1999).CrossRefGoogle Scholar
  27. 27.
    I. Yumoto, K. Hiroda, Y. Nodasaka, Y. Yokata, T. Hoshino, and K. Nakajima, Int. J. Sys. Evol. Microbiol., 54, 2379 (2004).CrossRefGoogle Scholar
  28. 28.
    S. Park, J. Y. Ryu, J. Seo, and H. G. Hur, J. Korean Soc. Appl. Biol. Chem., 55, 83 (2012).CrossRefGoogle Scholar
  29. 29.
    M. Bozic, V. Kokol, and G. M. Guebitz, Text. Res. J., 79, 895 (2009).CrossRefGoogle Scholar
  30. 30.
    M. Bozic, S. Pricelius, G. M. Guebitz, and V. Kokol, Biol. Prod. Proc. Eng., 85, 563 (2010).Google Scholar
  31. 31.
    S. Pricelius, C. Held, S. Sollner, M. Murkovic, M. Bozic, V. Kokol, A. Cavaco-Paulo, and G. M. Guebitz, Appl. Microbiol. Biotechnol., 77, 321 (2007).CrossRefGoogle Scholar
  32. 32.
    S. Rodriguez, M. M. Kayser, and J. D. Stewart, J. Am. Chem. Soc., 123, 1547 (2001).CrossRefGoogle Scholar
  33. 33.
    R. Csuk and B. I. Glanzer, Chem. Rev., 91, 49 (1991).CrossRefGoogle Scholar
  34. 34.
    E. Santaniello, P. Ferrabochi, P. Grisenti, and A. Manzocchi, Chem. Rev., 92, 1071 (1992).CrossRefGoogle Scholar
  35. 35.
    P. D’Arrigo, G. Pedrocchi-Fantoni, and S. Servi, Adv. Appl. Microbiol., 44, 81 (1997).CrossRefGoogle Scholar
  36. 36.
    S. M. Roberts, J. Chem. Soc., Perkin Trans., 1, 611 (2000).CrossRefGoogle Scholar
  37. 37.
    K. Nakamura and T. Matsuda, Curr. Org. Chem., 10, 1217 (2006).CrossRefGoogle Scholar
  38. 38.
    A. Frechter, G. F. Fuhrmann, and O. Kappelli, Adv. Micro. Physiol., 22, 123 (1981).CrossRefGoogle Scholar
  39. 39.
    B. M. Bakker, K. M. Overkamp, A. J. A. van Maris, P. Kotter, A. H. Luttik, J. P. van Dijken, and J. T. Pronk, FEMS Microbiol. Rev., 25, 15 (2010).Google Scholar
  40. 40.
    T. Kometani, E. Kitasuji, and R. Matsuno, Chem. Lett., 8, 1465 (1989).CrossRefGoogle Scholar
  41. 41.
    T. Kometani, H. Yoshi, Y. Takeuchi, and R. Matsuno, J. Ferment. Bioeng., 76, 414 (1993).CrossRefGoogle Scholar
  42. 42.
    T. Kometani, Y. Sakai, U. Hisae, H. Yoshi, and R. Matsuno, Biosci. Biotechnol. Biochem., 61, 1370 (1997).CrossRefGoogle Scholar
  43. 43.
    C. H. Wong and G. M. Whitesides, “Enzymes in Synthetic Organic Chemistry”, Pergamon Press, Oxford, 1994.Google Scholar
  44. 44.
    C. E. Perles, P. J. S. S.Moran, and P. L. O. O.Volpe, J. Mol. Cat. B: Enzym., 52-53, 82 (2008).CrossRefGoogle Scholar
  45. 45.
    E. Nevoigt, Microbiol. Mol. Biol. Rev., 72, 379 (2008).CrossRefGoogle Scholar
  46. 46.
    G. A. Baig, Color Technol., 128, 114 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society 2019

Authors and Affiliations

  1. 1.Department of Clothing and Textiles/Human Ecology Research InstituteChonnam National UniversityGwangjuKorea
  2. 2.School of Polymer Science and EngineeringChonnam National UniversityGwangjuKorea

Personalised recommendations