Skip to main content
Log in

Development of Hybrid Composites with Improved Mechanical and Self-healing Properties

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Self-repair materials or self-healing composites had made a prominent role in present scenario, which can heal the damages occurred by accidents inside and outside body by itself without any external efforts. In the present study hybrid matrix, trimethoxy propyl silane (TMPS) treated carbon fibers and vascular tube reinforced hybrid matrix self-healing composites are fabricated by VARTM technique. Tensile, flexural and low velocity impact properties of the composites were tested. Self-healing effect is compared through low velocity impact test by comparing the strength before damage and after healing. Three types of healing agents i.e., vinyl ester, epoxy and hybrid resin were used in vascular tubes. Hybrid resin filled vascular tubes inserted composites are proved to be the best with 98.03 % healing efficiency. Characterization with C-Scan is done to know damage effect inside the composite. The tensile and flexural strengths of composites with vascular tubes are 249.94 and 184.91 MPa respectively. The overall results concluded that the manufactured self-healing composites have both mechanical strength and self-healing performance. Thus this approach provides a novel path to researchers for the development of self-healing composites in an economical way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Krishan Chawla in “Composite Materials”, Springer Link, Birmingham, USA, 2012.

    Google Scholar 

  2. H. Abramovich in “Stability and Vibrations of Thin Walled Composite Structures”, Elsevier Science & Technology; Woodhead Publishing, United Kingdom, 2017.

    Google Scholar 

  3. S.-J. Park and M.-K. Seo, Interface Sci. Technol., 21, 1 (2018).

    Article  Google Scholar 

  4. Ravindra K. Dhir OBE, Jorge de Brito, Raman Mangabhai, Chao Qun Lye in “3 Production and Properties of Copper Slag’, Sustainable Construction Materials: Copper Slag”, 27–86, Sustainable Construction Materials, Woodhead Publishing Series in Civil and Structural Engineering, United Kingdom, 2017.

  5. D. Ratna in “Handbook of Thermoset Resins”, ISmithers Rapra Publishing, 2009.

    Google Scholar 

  6. Rocio Yaneli Aguirre-Loredo, Gonzalo Velazquez, Miguel C. Gutierrez, Javier Castro-Rosas, Esmeralda Rangel-Vargas, Carlos Alberto Gómez-Aldapa, Food Packaging and Shelf Life, 17, 162 (2018).

  7. M. Biron in “Thermosets and Composites”, 2nd ed., Elsevier, Waltham, USA, 2013.

    Google Scholar 

  8. J. M. Margolis in “Advanced Thermoset Composites: Industrial and Commercial Applications”, Van Nostrand Reinhold, 1986.

    Google Scholar 

  9. S. Beland in “High-performance Thermoplastic Resins and Their Composites”, William Andrew, Canada, 2012.

    Google Scholar 

  10. M. N. Prabhakar, A. U. R. Shah, and J.-I. Song, Carbohydr. Polym., 168, 201 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. J. Flynn, A. Amiri, and C. Ulven, Mater. Des., 102, 21 (2016).

    Article  CAS  Google Scholar 

  12. M. Venkata Ramana and S. Ramprasad, Materials Today: Proceedings, 4, 8654 (2017).

    Article  Google Scholar 

  13. S. Kumar, B. Gangil, L. Prasad, and V. Kumar Patel, Materials Today: Proceedings, 4, 9576 (2017).

    Article  Google Scholar 

  14. D. K. Jesthi, P. Mandal, A. K. Rout, and R. K. Nayak, Procedia Manufacturing, 20, 530 (2018).

    Article  Google Scholar 

  15. J. Liang, M. C. Saha, and M. C. Altan, Procedia Engineering, 56, 814 (2013).

    Article  CAS  Google Scholar 

  16. T. Alomayri, F. U. A. Shaikh, and I. M. Low, Mater. Des., 57, 360 (2014).

    Article  CAS  Google Scholar 

  17. R. Haik, E. Adiel Sasi, and A. Peled, Cement and Concrete Composites, 80, 1 (2017).

    Article  CAS  Google Scholar 

  18. D. Cai, G. Zhou, X. Wang, C. Li, and J. Deng, Polymer Testing, 58, 142 (2017).

    Article  CAS  Google Scholar 

  19. M. M. Houck and J. A. Siegel in “Fundamentals of Forensic Science”, 3rd ed., Academic Press, 2015.

    Google Scholar 

  20. S.-B. Park, D.-W. Lee, and J.-I. Song, Int. J. Precision Eng. Manufact., 19, 441 (2018).

    Article  Google Scholar 

  21. M. Parvinzadeh, Global J. Phys. Chem., 3, 2 (2012).

    Google Scholar 

  22. B. Wang, Q. Fu, T. Yin, H. Li, L. Qi, and Y. Fu, Carbon, 139, 45 (2018).

    Article  CAS  Google Scholar 

  23. J. Donnini, V. Corinaldesi, and A. Nanni, Compos. Part B: Eng., 88, 220 (2016).

    Article  CAS  Google Scholar 

  24. Y. Ma, T. Yokozeki, M. Ueda, T. Sugahara, Y. Yang, and H. Hamada, Compos. Sci. Technol., 151, 268 (2017).

    Article  CAS  Google Scholar 

  25. R. S. Trask, H. R. Williams, and I. P. Bond, Bioinspiration & Biomimetics, 12, 1 (2007).

    Article  CAS  Google Scholar 

  26. S. M. Bleay, C. B. Loader, V. J. Hawyes, L. Humberstone, and P. T. Curtis, Compos. Pt. A-Appl. Sci. Manuf., 32, 1767 (2001).

    Article  Google Scholar 

  27. R. P. Woo and K. M. O’Conner, J. Appl. Phys., 52, 5953 (1982).

    Google Scholar 

  28. M. R. Kessler, Part G: J. Aerospace Eng., 221, 479 (2007).

    CAS  Google Scholar 

  29. Y. Wang, D. T. Pham, and C. Ji, Cogent Engineering, 2, 1075686 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-il Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latif, M., Kumar, C.N., Prabhakar, M. et al. Development of Hybrid Composites with Improved Mechanical and Self-healing Properties. Fibers Polym 20, 413–420 (2019). https://doi.org/10.1007/s12221-019-8734-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8734-1

Keywords

Navigation