Skip to main content
Log in

Characterization of Cassava Fiber of Different Genotypes as a Potential Reinforcement Biomaterial for Possible Tissue Engineering Composite Scaffold Application

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Cassava bagasse contains considerable amount of natural single elementary cellulose fibers and white thick root fiber (thick-core fiber) that has seen frequent application in the packaging industry as reinforcement for plastic composite development. However, a review of the literature was unable to find any study that characterized the material properties (such as tensile properties) of both the single elementary and white thick-core cassava cellulose fibers), and their application as potential reinforced filler in tissue engineering scaffold development. In this study, the tensile properties, morphology, crystallinity and thermal degradation profile of non-chemically treated single elementary cellulose fibers and thick-core fibers of different cassava genotypes were investigated. Fibers were tested according to ASTM C1557 under direct tension in a standard mechanical testing system and the cross-sectional area of the fractured regions of the fibers were determined using a 3D optical microscopy method. Cassava fibers of different genotypes did not show any significant difference in tensile properties, with average tensile strength ranging from (5.1–7.3 MPa), Young’s modulus (258–333 MPa) and failure strain (3.4–4.2 %). Tensile test conducted for several gage lengths did not influence the tensile strength and Young’s modulus of the fibers, however, strain-at-break depended on gage length. Single elementary and thick-core fibers showed similar surface morphology, degree of crystallinity (ranging from 21–40 %) and tensile properties with some variation in elastic modulus. Cassava fibers are thermally stable around 100–200 oC, where processing could be performed. Preliminary results showed an improvement in the mechanical properties of a gelatin scaffold when cassava cellulose microfibers were used as reinforcing fillers. The current findings show that cassava fiber has a reasonable mechanical strength, stiffness and thermal stability, and could be considered as a reinforced biomaterial to improve the mechanical integrity of tissue engineering scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Edhirej, S. M. Sapuan, M. Jawaid, and N. I. Zahari, Polym. Compos., 38, 555 (2017).

    Article  CAS  Google Scholar 

  2. N. J. Tonukari, J. Biotechnol., 7, 12 (2004).

    Google Scholar 

  3. D. R. Lu, C. M. Xiao, and S. J. Xu, Express Polym. Lett., 3, 366 (2009).

    Article  CAS  Google Scholar 

  4. K. W. Kim, B. H. Lee, H. J. Kim, K. Sriroth, and J. R. Dorgan, J. Therm. Anal. Calorim., 108, 1131 (2011).

    Article  CAS  Google Scholar 

  5. J. Sunthornvarabhas, P. Chatakanonda, K. Piyachomkwan, and K. Sriroth, Mater. Lett., 65, 985 (2011).

    Article  CAS  Google Scholar 

  6. E. D. M. Teixeira, D. Pasquini, A. A. S. Curvelo, E. Corradini, M. N. Belgacem, and A. Dufresne, Carbohydr. Polym., 78, 422 (2009).

    Article  CAS  Google Scholar 

  7. E. D. M. Teixeira, A. A. S. Curvelo, A. C. Corrêa, J. M. Marconcini, G. M. Glenn, and L. H. C. Mattoso, Ind. Crops Prod., 37, 61 (2012).

    Article  CAS  Google Scholar 

  8. A. Pandey, C. R. Soccol, P. Nigam, V. T. Soccol, L. P. S. Vandenberghe, and R. Mohan, Bioresour. Technol., 74, 81 (2000).

    Article  CAS  Google Scholar 

  9. K. N. Matsui, F. D. S. Larotonda, S. S. Paes, D. B. Luiz, A. T. N. Pires, and J. B. Laurindo, Carbohydr. Polym., 55, 237 (2004).

    Article  CAS  Google Scholar 

  10. A. Célino, S. Fréour, F. Jacquemin, and P. Casari, Front. Chem., 1, 43 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. C. C. Egbeocha, S. N. Asoegwu, and N. A. A. Okereke, FUTOJNLS, 2, 140 (2016).

    Google Scholar 

  12. E. Hermiati, D. Mangunwidjaja, T. C. Sunarti, O. Suparno, and B. Prasetya, Sci. Res. Essays., 7, 100 (2012).

    CAS  Google Scholar 

  13. K. Sriroth and K. Sangseethong, Acta Hortic., 703, 145 (2006).

    Article  CAS  Google Scholar 

  14. D. Pasquini, E. D. M. Teixeira, A. A. D. S. Curvelo, M. N. Belgacem, and A. Dufresne, Ind. Crops Prod., 32, 486 (2010).

    Article  CAS  Google Scholar 

  15. R. Wicaksono, K. Syamsu, I. Yuliasih, and M. Nasir, Chem. Mater. Res., 3, 79 (2013).

    Google Scholar 

  16. F. O. Farias, A. C. Jasko, T. A. D. Colman, L. A. Pinheiro, E. Schnitzler, A. C. Barana, and I. M. Demiate, Brazilian Arch. Biol. Technol., 57, 821 (2014).

    Article  CAS  Google Scholar 

  17. A. Edhirej, S. M. Sapuan, M. Jawaid, and N. I. Zahari, Fiber. Polym., 18, 162 (2017).

    Article  CAS  Google Scholar 

  18. S. M. Lien, L. Y. Ko, and T. J. Huang, Acta Biomater., 5, 670 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. F. Asghari, M. Samiei, K. Adibkia, A. Akbarzadeh, and S. Davaran, Artif. Cells, Nanomedicine Biotechnol., 45, 185 (2017).

    Article  CAS  Google Scholar 

  20. Q. L. Loh and C. Choong, Tissue Eng. Part B Rev., 19, 485 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. E. Entcheva, H. Bien, L. Yin, C. Y. Chung, M. Farrell, and Y. Kostov, Biomaterials, 25, 5762 (2004).

    Article  CAS  Google Scholar 

  22. Q. Xing, F. Zhao, S. Chen, J. McNamara, M. A. DeCoster, and Y. M. Lvov, Acta Biomater., 6, 2132 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. I. K. Ko and H. Iwata, Ann. N. Y. Acad. Sci., 944, 443 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. P. Pooyan, R. Tannenbaum, and H. Garmestani, J. Mech. Behav. Biomed. Mater., 7, 50 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. ASTM C1557–14, Standard Test Method for Tensile Strength and Young’s Modulus of Fibers, ASTM International, West Conshohocken, PA, www.astm.org, 2014.

  26. L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, Text. Res. J., 29, 786 (1959).

    Article  CAS  Google Scholar 

  27. F. A. Silva, N. Chawla, and R. D. T. Filho, J. Biobased Mater. Bioenergy, 4, 106 (2010).

    Article  CAS  Google Scholar 

  28. M. E. A. Fidelis, T. V. C. Pereira, O. D. F. M. Gomes, F. D. Andrade Silva, and R. D. T. Filho, J. Mater. Res. Technol., 2, 149 (2013).

    Article  CAS  Google Scholar 

  29. F. Tomczak, K. G. Satyanarayana, and T. H. D. Sydenstricker, Compos. Part A Appl. Sci. Manuf., 38, 2227 (2007).

    Article  CAS  Google Scholar 

  30. F. A. Silva, N. Chawla, and R. D. T. Filho, Compos. Sci. Technol., 68, 3438 (2008).

    Article  CAS  Google Scholar 

  31. W. Hu, M. T. Ton–That, F. Perrin–Sarazin, and J. Denault, Polym. Eng. Sci., 50, 819 (2010).

    Article  CAS  Google Scholar 

  32. F. Versino, O. V. López, and M. A. García, Ind. Crops Prod., 65, 79 (2015).

    Article  CAS  Google Scholar 

  33. M. Wada and T. Okano, Cellulose, 8, 183 (2001).

    Article  CAS  Google Scholar 

  34. M. Poletto, H. L. Ornaghi Júnior, and A. J. Zattera, Materials, 7, 6105 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. A. L. M. P. Leite, C. D. Zanon, and F. C. Menegalli, Carbohydr. Polym., 157, 962 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Z. Xiang, R. Liao, M. S. Kelly, and M. Spector, Tissue Eng., 12, 2467 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. L. A. Smith, J. A. Beck, and P. X. Ma, “Nanofibrous Scaffolds and their Biological Effects”, in: Nanotechnologies Life Sci., Online, 2007.

    Book  Google Scholar 

  38. V. Tserki, P. Matzinos, S. Kokkou, and C. Panayiotou, Compos. Part A Appl. Sci. Manuf., 36, 965 (2005).

    Article  CAS  Google Scholar 

  39. H. S. Kim, S. Kim, H. J. Kim, and H. S. Yang, Thermochim. Acta, 451, 181 (2006).

    Article  CAS  Google Scholar 

  40. B. Pei, W. Wang, Y. Fan, X. Wang, F. Watari, and X. Li, Regen. Biomater., 4, 257 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. S. Yang, K. F. Leong, Z. Du, and C. K. Chua, Tissue Eng., 8, 1 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Food and Agriculture Organization of the United Nations. Trade and Markets Division. Food Outlook: Biannual Report on Global Food Markets, October 2014. Food and Agriculture Organization of the United Nations, 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Diabor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diabor, E., Funkenbusch, P. & Kaufmann, E.E. Characterization of Cassava Fiber of Different Genotypes as a Potential Reinforcement Biomaterial for Possible Tissue Engineering Composite Scaffold Application. Fibers Polym 20, 217–228 (2019). https://doi.org/10.1007/s12221-019-8702-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8702-9

Keywords

Navigation